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ABSTRACT

The paper presents new analytical models for calculating the time response of a meander line (ML) turn with symmetrical cross-section and terminations to a pulse 
excitation. For the first time, the models were used to derive simple analytical models to equalize voltage amplitudes of the first pulses at the ML turn output: 
two pulses in homogeneous and three pulses in inhomogeneous dielectric filling. The obtained models were validated by quasistatic simulation. As a result, we 
theoretically proved that the maximum pulse amplitudes at the ML output are equal to 61.8% and 41.4% of the input amplitudes for the lines with homogeneous 
and inhomogeneous dielectric filling, respectively. The results could considerably simplify a computer-aided design, allowing for accelerated optimization of these 
structures without costly multivariate calculation of time response by numerical methods.
Index Terms—Analytical models, even mode, odd mode, meander line, protective device.
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I. INTRODUCTION

Meander lines (MLs) are a common component of printed circuit boards (PCBs) in modern 
devices. MLs have also found application in receiving and transmitting antennas [1], inductors 
[2], multilayer capacitors [3], filtering devices [4], devices for correcting group delay time, and 
phase correctors [5].

Most studies of MLs aim to minimize useful signal distortions that arise from cross-couplings. 
Since, in its first approximation, an ML can be represented by a set of pairs of coupled lines, the 
numerical methods developed for coupled lines are used to analyze ML parameters. However, 
the use of these methods is not always advisable. For example, in a number of special cases (with 
negligible loss and dispersion), the computational costs of simulation by a numerical method 
are high (especially in case of optimization). In these situations, it is reasonable to use analytical 
models for quick estimates that also provide acceptable accuracy. For example, crosstalk, signal 
propagation delay, and pulse distortions in interconnects can be analyzed with the approach 
proposed in [6]. The transfer functions of N coupled interconnects with arbitrary impedances 
at the ends can be determined by using the expressions in a closed form, as in [7]. In addition, 
noteworthy are models based on the numerical inverse Laplace transform [8, 9], and analytical 
models for periodic multistage structures of single and coupled lines [10].

One of the new applications of MLs is the protection against an ultrashort pulse (USP) by its 
decomposition into pulses with equal and lower amplitudes. The pulse is decomposed into 
two main pulses in an air-filling line [11], into three pulses in a microstrip line [12], and into 
four pulses in an asymmetric cross-section line [13]. The specificity of the result of the USP’s 
excitation is that the coupling from it can be perceived as useful signals, destroying digital 
exchange, and can penetrate through traditional protection means and lead to failure [14]. 
Decreasing the resulting amplitude of the interference to a safe level with new devices (single 
or connected in cascade) instead of or in addition to well-known devices, can improve the pro-
tection. Therefore, engineers and researchers are actively investigating and developing new 
devices that enable weakening the impact of USPs by their decomposition into pulses with 
lower amplitudes (minimum when they are equalized). One example of such devices is a modal 
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filter [15]. Meanwhile, the protective MLs are very similar to modal 
filters [16, 17] and can even be superior, since they provide a larger 
number of decomposition pulses, a doubled propagation path 
along the ML, and the absence of resistive components [11-13].  
Thus, the study and application of MLs to protect equipment 
against USPs is relevant.

In the noted studies of protective MLs, the analysis was performed in 
the frequency domain based on algorithmic mathematical models. 
However, the use of such models is costly, especially if it is necessary 
to optimize the lines in order to equalize and minimize the ampli-
tudes of the decomposed pulses [18]. Therefore, it is important to 
obtain simple analytical models for quick and a priori estimates of 
the pulse amplitudes and also the conditions for their equalization. 
The aim of this paper is to do this for cases of two and three pulses 
decomposed in a turn of an ML.

II. INITIAL DATA

Fig. 1 shows a circuit diagram of the ML under investigation.

It consists of a reference and two signal parallel conductors with 
the length l, interconnected at one end. One of the signal conduc-
tors is connected to the emf. source E with internal admittance Y0, 
while the other is connected to the load Y0. Since the signal at the 
ML end is represented as a sequence of main pulses, first it is neces-
sary to analytically obtain the amplitude of each of the pulses. For 
this, it is convenient to use analytical models for one segment of a 
symmetric coupled transmission line obtained on the basis of mod-
els for a single line with admittance Y1 and per-unit-length delay τ1  
(see Fig. 2) [10].

To make further discourse clear, we will first present these models. 
The response components at the far (considering the transmitted 
wave) and near (considering the reflections from the beginning and 
end of the line segment) ends of the structure are:
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The expressions, when the numbers of reflections (kref) are set, allow 
us to calculate the response at the far (which consider the com-
ponents that experienced an even number of reflections) or near 
(which consider the components that experienced an odd number 
of reflections) ends of the line:
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Expressions (1)–(7) for a single line are applicable for a symmetrical 
(in cross-section and on loads) coupled line if we write them sepa-
rately, replacing index “1” in Y1 and τ1 with indices “e” and “o” for the 
even and odd modes, respectively. Then, when the voltage at the 
beginning of the active conductor Vin(t) is equal to half the exciting 
emf., the response components for the even and odd modes can 
give the responses at each node of the coupled line
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where V1(t) and V3(t) are the responses at the beginning and end of 
the active conductor, and V2(t) and V4(t) are responses of the passive 
conductor.

III. MODELS FOR CALCULATING THE TIME RESPONSE IN THE 
ML TURN

The structure in Fig. 1 is a coupled line with conductors without ter-
minations and interconnected at the far end. Then, for the far end (in 
Fig. 2 and in (1–2)), Y2=∞ for the odd mode, and Y2=0 for the even 
mode. Then, expressions (1–7) for each mode will be greatly simpli-
fied. Using (8–11), we obtain the final expressions for calculating the 
responses at nodes V1, V2, and V3:
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(12)Fig. 1.  Circuit diagram of the ML turn.

Fig. 2.  Equivalent circuit of the transmission line segment with 
terminations.
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To verify expressions (12–14), we calculated the time responses at 
circuit nodes V1, V2, and V3 (Fig. 2) to the USP excitation (Fig. 3) in 
the TALGAT software by a numerical method in the frequency 
domain [19]. The parameters of the ML cross-section, the source, 
and the load are taken from [12]. The obtained waveforms com-
pletely coincide.

From (13), it is easy to get the analytical expressions of the normal-
ized amplitudes of first (crosstalk – Vc), second (odd mode – Vo), and 
third (even mode – Ve) pulses at the ML output
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Fig. 3.  Voltage waveforms at nodes V1 (a), V2 (b), and V3 (c) of the circuit in Fig. 1 calculated using expressions (12–14) (- -) and with TALGAT.
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and formulate the conditions for the equality of pulse amplitudes.

IV. EQUALIZING THE TWO OUTPUT PULSE AMPLITUDES

If the per-unit-length delays of the even and odd line modes are the 
same, their pulse amplitudes are summed. Then, from Vc = Vo + Ve and 
(15), we obtain (Yo + 3Ye)/Y0 + (3Y0 + Ye)/Yo +( Y0 – Yo)/Ye = –8.

We consider a special case of minimizing signal reflections at the 
ends of the conductors when Y0 = √(YeYo). Then, after substitut-
ing k = √(Yo/Ye), which has the physical meaning of the coupling 
coefficient, we obtain the biquadratic equation k4 – 2k3 – 8k2 – 6k –  
1 = 0, having one physical root k = √5 + 2 ≈ 4.236, which deter-
mines the normalized amplitude at the ML end as (k – 1)/(k + 1) =  
(√5 – 1)/2 ≈ 0.618.

For verification, we calculated the matrices and the time responses 
at nodes V1 and V2 to the USP excitation in the TALGAT software. The 
parameters of the excitation, line cross-section, source, and loads are 
taken from [11]. Matrices C [pF/m], L [nH/m], and Z [Ohm] are the 
following:
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We calculated the impedances of the odd and even modes from 
matrix Z (Zo = 11.496 Ohm and Ze = 206.365 Ohm) that ensure the 

condition k = √(Ze/Zo) ≈ 4.236. Fig. 4 shows the waveforms at nodes 
V1 and V2. The first two pulses at the end of the turn have the same 
amplitudes that are equal to 61.8% of the input level. A single pulse 
in Fig. 4 at node V1 is the excitation. The first pulse in Fig. 4 (at node 
V2) is crosstalk. The second pulse is the sum of the pulses of the even 
and odd modes, since they propagate in the ML with a homoge-
neous dielectric filling with the same delay.

V. EQUALIZING THE THREE OUTPUT PULSE AMPLITUDES

For differing per-unit-length delays of even and odd line modes, 
their pulses can be separate. Then, equating their amplitudes (Vo = Ve 
from (15)), we obtain

	 Y Y Ye o0 � � ( ). 	 (18)

From the condition of equality of the first and second pulse ampli-
tudes (Vc = Vo), we obtain (Yo – 3Ye)/Y0 + Ye/Yo = 1.

Considering (18) and substituting k = √(Yo/Ye), we obtain the 
cubic equation k3 – k2 – 3k – 1 = 0 that has one physical root 
k = √2 + 1 ≈ 2.413 which determines the normalized amplitude at 
the ML end as (k – 1)/(k + 1) = √2 – 1 ≈ 0.414.

For verification, the parameters of the excitation, line cross-section, 
source, and loads are taken from [12]. Matrices C [pF/m], L [nH/m], 
and Z [Ohm] are the following:
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Fig. 4.  Voltage waveforms at nodes V1 (– –) and V2 (––) of the ML in the air filling when k≈4.236.

Fig. 5.  Voltage waveforms at nodes V1 (– –) and V2 (––) of the microstrip ML turn when k≈2.413.
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We calculated the odd and even mode impedances from matrix Z (Zo =  
14.822 Ohm and Ze = 86.282 Ohm) that ensure the condition k = 
√(Ze/Zo) ≈ 2.413. Fig. 5 shows the waveforms at nodes V1 and V2. The 
first three pulses at the end of the turn have the same amplitudes 
that are equal to 41.4% of the input level. The first pulse in Fig. 5 (at 
node V2) is crosstalk. The second pulse is an odd-mode pulse, and the 
third is an even-mode pulse.

VI. CONCLUSION

Analytical models for calculating the response to the time domain 
excitation of an ML turn with symmetrical cross-section and termi-
nations were obtained and verified. The models allowed obtaining 
the condition (in particular case of matching) for one and two pulse 
amplitudes to be equalized after decomposing a USP at the end of 
the ML turn with homogeneous and inhomogeneous dielectric fill-
ing, respectively. The obtained analytical models and estimations 
were verified by quasistatic simulation. As a result, we theoretically 
proved that the maximum amplitude at the end of the ML equals 
61.8% and 41.4% of the input amplitude for the lines with homoge-
neous and inhomogeneous dielectric filling, respectively.

The obtained analytical models and conditions could considerably 
simplify computer-aided design, allowing for accelerated optimi-
zation of these structures without costly multivariate calculation 
of time response by numerical methods. Moreover, the obtained 
models and conditions could completely exclude calculating the 
response from optimization process that is used to equalize pulse 
amplitudes. The main outcome of the paper is that the new results 
supplement the theoretical framework of the ML analysis and opti-
mization, and can be used to perform accelerated design of delay 
lines and create protective devices for arbitrary line cross-sections 
and excitation pulse waveforms.
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