

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых

РОССИЯ, ТОМСК, 21 – 24 апреля 2020 г.

Том 7. IT - технологии и электроника

PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT

Abstracts XVII International Conference of Students and Young Scientists

RUSSIA, TOMSK, April 21 – 24, 2020 Volume 7. IT - technologies and Electronics

Национальный исследовательский Томский государственный университет

MINISTRY OF SCIENCE AND EDUCATION OF THE RUSSIAN FEDERATION

PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT

Abstracts

XVII International Conference of students, graduate students and young scientists

April 21-24, 2020

Russia, Tomsk

Volume 7. Information Technologies and Electronics

Tomsk Tomsk State University Publishing House control system and radioelectronics 2020 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Сборник научных трудов

XVII Международной конференции студентов, аспирантов и молодых ученых

21-24 апреля 2020 г.

Россия, Томск

Том 7. IT-технологии и электроника

Томск Издательство Томского государственного университета систем управления и радиоэлектроники 2020

Редакционная коллегия: И. А. Курзина, доктор физико-математических наук, доцент; Г. А. Воронова, кандидат химических наук, доцент; С. А. Поробова

Перспективы развития фундаментальных наук : сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, 21–24 апреля 2020 г., Россия, Томск. В 7 т. Т. 7. ITтехнологии и электроника / Нац. исслед. Том. политехн. ун-т, Нац. исслед. Том. гос. ун-т, Том. гос. архитектурно-строит. ун-т, Томск. гос. ун-т систем упр. и радиоэлектроники, Том. нац. исслед. мед. центр РАН ; под ред. И.А. Курзиной, Г.А. Вороновой. – Томск : Изд-во Томск. гос. ун-та систем упр. и радиоэлектроники, 2020. – 143, [3] с.

ISBN 978-5-86889-871-6 (т. 7)

ISBN 978-5-86889-864-8

Сборник содержит труды участников XVII Международной конференции студентов, аспирантов и молодых учёных «Перспективы развития фундаментальных наук», представленные на секции «IT-технологии и электроника».

Для студентов, аспирантов, молодых ученых и преподавателей, специализирующихся в области интеллектуальных систем управления, автоматизированных систем обработки информации и управления, информационной безопасности, наноэлектроники, получения и исследования наноматериалов, оптоэлектроники и нанофотоники, плазменной эмиссионной электроники, интеллектуальной силовой электроники, СВЧэлектроники, систем радиолокации, телевидения, радиосвязи, радиометрии и распространения волн радиочастотного и акустического диапазонов, а также импульсных и радиочастотных измерениях.

> УДК 501:004 (063) ББК 72:32.81л0

Научное издание ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК Сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых Подписано в печать 15.06.20. Формат 60х84/8. Усл. печ. л. 16,97. Тираж 100. Заказ 129.

Томский государственный университет систем управления и радиоэлектроники. 634050, г. Томск, пр. Ленина, 40. Тел. (3822) 533018.

ISBN 978-5-86889-871-6 (т. 7) ISBN 978-5-86889-864-8

ХVІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

СОДЕРЖАНИЕ

ANALYSIS AND DIAGNOSIS OF CYSTIC FIBROSIS OF THE LUNGS WITH IMPROVED DEEP LEARNING TECHNIQUES N.J. Francis, N.S. Francis, M. Saqib	8
BRONCHOPULMONARY SEGMENTATION OF THE LUNGS BY USING TERNARY NET WEIGHTS IN MASK-R NEURAL NETWORK N.S. Francis, N.J. Francis, M. Saqib	11
ДВУХДИАПАЗОННАЯ АНТЕННА ДИПОЛЬНОГО ТИПА С КОНЦЕВЫМ ПИТАНИЕМ С.А. Алексейцев	14
COMPARISON OF QUASISTATIC AND ELECTRODYNAMIC ESTIMATIONS OF THE RADIATED EMISSION FROM TWO COUPLED WIRES OVER A GROUND PLANE Alhaj hasan Adnan	17
ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК FLIP-CHIP СВЕТОДИОДОВ Н.К. Афанасьев, А.А. Томашевич	20
ОПТИМИЗАЦИЯ ПАРАМЕТРОВ НЕЧЕТКОГО КЛАССИФИКАТОРА КОМБИНАЦИЕЙ АЛГОРИТМОВ ГРАВИТАЦИОННОГО ПОИСКА И ПРЫГАЮЩИХ ЛЯГУШЕК М.Б. Бардамова	23
ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ ИЗМЕНЕНИЙ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ, ИНДУЦИРОВАННЫХ ПРИ ФОРМИРОВАНИИ КАНАЛЬНЫХ ВОЛНОВОДОВ В ПОВЕРХНОСТНО ЛЕГИРОВАННОМ КРИСТАЛЛЕ НИОБАТА ЛИТИЯ	
А.Д. Безпалый РАСПОЗНАВАНИЕ АВТОМОБИЛЬНЫХ НОМЕРОВ МЕТОДОМ ВИОЛЫ-ДЖОНСА С.И. Беляев	26 29
ШИРОКОАПЕРТУРНЫЙ УСКОРИТЕЛЬ ЭЛЕКТРОНОВ НА ОСНОВЕ ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ С ВЫВОДОМ ПУЧКА В АТМОСФЕРУ С Ю. Лараникарии	32
МЕХАНИЗМЫ ЗАЩИТЫ ОТ УГРОЗ В КОМПЬЮТЕРНОЙ СЕТИ А.С. Дыхова, Д.Ю. Попова, А.К. Новохрестов	35
ПРЕОБРАЗОВАНИЕ НС ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ПОРОШКАХ НЕЛИНЕЙНЫХ КРИСТАЛЛОВ СКАНДОБОРАТОВ А.Я. Жамус, Д.М. Ежов, А.А. Гореявчева	38
ИСПОЛЬЗОВАНИЕ N-НОРМ ДЛЯ АНАЛИЗА УСТРОЙСТВА С ОДНОКРАТНЫМ МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ А.В. Жечева, Е.С. Жечев	41
ПАРАМЕТРЫ ПУЧКОВОЙ ПЛАЗМЫ, СОЗДАВАЕМОЙ ПРИ ТРАНСПОРТИРОВКЕ НЕПРЕРЫВНОГО ПУЧКА ЭЛЕКТРОНОВ В ДИАПАЗОНЕ ДАВЛЕНИЙ СРЕДНЕГО ВАКУУМА А.А. Зенин, Е.М. Содокина	44
АНАЛИТИЧЕСКАЯ МОДЕЛЬ ДЛЯ ОЦЕНКИ ЭФФЕКТИВНОСТИ ЭКРАНИРОВАНИЯ МНОГОСЛОЙНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ А.А. Иванов, А.В. Демаков	47
ОЦЕНКА ВЛИЯНИЯ НЕИДЕАЛЬНОСТИ ПАРАМЕТРОВ ВЫСОКОЧАСТОТНЫХ УЗЛОВ ВХОДНОГО БЛОКА ИЗМЕРИТЕЛЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ НА ТОЧНОСТЬ ИЗМЕРЕНИЙ	50
М.А. Канина СБОР ДАННЫХ В СИСТЕМЕ ГЛОБАЛЬНОГО ПОЗИЦИОНИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНО ОПРЕДЕЛЯЕМОЙ РАДИОСИСТЕМЫ М.М. Канит	50
ПОТЕНЦИАЛ ИЗОЛИРОВАННОЙ МИШЕНИ, ОБЛУЧАЕМОЙ ЭЛЕКТРОННЫМ ПУЧКОМ В СРЕДНЕМ ВАКУУМЕ, ПРИ НАЛИЧИИ ДОПОЛНИТЕЛЬНОГО ЭЛЕКТРОДА ВБЛИЗИ МИШЕНИ	55
К.И. Карпов, Д.Б. Золотухин	56

6

КЛАСТЕРИЗАЦИЯ ЖАЛОБ ПАЦИЕНТОВ ИЗ ДОКУМЕНТА «ОСМОТР ЛЕЧАЩИМ ВРАЧОМ» Е.В. Кащеева	59
ИССЛЕДОВАНИЕ РАЗЛИЧНЫХ АРХИТЕКТУР ДЛЯ СИСТЕМЫ ОПРЕДЕЛЕНИЯ ПОЛЬЗОВАТЕЛЯ ПО ЕГО ПОДПИСИ А.А. Коновалов, Б.С. Лодонова, Я.А. Усольцев	62
РАЗРАБОТКА ТЕХНОЛОГИИ И ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ ТРЕХМЕРНОЙ РЕКОНСТРУКЦИИ ФОРМЫ СТОПЫ ЧЕЛОВЕКА ПО ВИДЕОПОТОКУ А.В. Куртукова, Л.С. Шилов, А.М. Федотова	65
РАЗРАБОТКА ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ АНАЛИЗА ТОНАЛЬНОСТИ ОТЗЫВОВ ПОЛЬЗОВАТЕЛЕЙ Н.С. Мамеев	68
ИСПОЛЬЗОВАНИЕ ECLIPSE THEIA ДЛЯ СОЗДАНИЯ ИНТЕГРИРОВАННОЙ СРЕДЫ РАЗРАБОТКИ ДЛЯ ЯЗЫКА REFLEX К.В. Марченко	71
ВЛИЯНИЕ ТОЛЩИНЫ Al ₂ O ₃ -Ti КОМПОЗИТА НА ВОЗМОЖНОСТЬ СПЕКАНИЯ ЕГО ЭЛЕКТРОННО-ЛУЧЕВЫМ МЕТОДОМ В ФОРВАКУУМЕ Г.Ф. Марчук, В.Т. Чан	74
АНАЛИЗ ЗАДЕРЖЕК ИМПУЛЬСОВ РАЗЛОЖЕНИЯ В СИСТЕМЕ КАБЕЛЬ – ПЛАТА С МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ А.В. Медведев	78
АВТОМАТИЗАЦИЯ СОЗДАНИЯ ОТЧЕТОВ ПО ЭФФЕКТИВНОСТИ РАБОТЫ РЕКЛАМНЫХ КАМПАНИЙ М.Г. Москалев	81
КОРПОРАТИВНЫЙ ШЛЮЗ НА БАЗЕ ОТЕЧЕСТВЕННОГО СЕРВЕРНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ Д.А. Овчинников	84
ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СПЕКТРОВ ИЗЛУЧЕНИЯ ПЛАЗМЫ, ГЕНЕРИРУЕМОЙ ИМПУЛЬСНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ В ФОРВАКУУМНОМ ДИАПАЗОНЕ ДАВЛЕНИЙ А.В. Казаков, А.В. Медовник, Н.А. Панченко	87
ЦИФРОВАЯ ЛОГИСТИКА В УПРАВЛЕНИИ ЦЕПЯМИ ПОСТАВОК: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ Ю.В. Парфентьев	90
ЧЕТЫРЕХЛУЧЕВАЯ ФАР С ИЗЛУЧАТЕЛЯМИ КОНЦЕВОГО ТИПА Ю.Н. Паршин	93
ИНФОРМАЦИОННАЯ СИСТЕМА ОТДЕЛА КАДРОВ УНИВЕРСИТЕТА ПАТТИМУРЫ, АМБОН - ИНДОНЕЗИЯ В Э. Паттиралжаване	96
СИСТЕМА ПЕРСОНАЛИЗАЦИИ ЭЛЕКТРОННОГО ПОРТФОЛИО НА ОСНОВЕ ЗАГРУЖЕННЫХ МАТЕРИАЛОВ	
Ф.Д. Пираков ВЛИЯНИЕ СКОРОСТИ НАГРЕВА Al ₂ O ₃ -Ti КОМПОЗИТА НА ОДНОРОДНОСТЬ ЕГО СПЕКАНИЯ С ИСПОЛЬЗОВАНИЕМ ФОРВАКУУМНОГО ПЛАЗМЕННОГО ЭЛЕКТРОННОГО ИСТОЧНИКА А.А. Поддубнов, А.Е. Петров, В.Т. Чан	99 102
РАЗРАБОТКА ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ КЛАСТЕРИЗАЦИИ ПОТРЕБИТЕЛЕЙ ПО ИХ ОТНОШЕНИЮ К АСПЕКТАМ ПРОДУКТА К.Ю. Попова	105
АВТОМАТИЗАЦИЯ ПРОЦЕССА УСТАНОВКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ НА РАБОЧЕМ МЕСТЕ В КОРПОРОТИВНОЙ СЕТИ В.И. Пустынников	108
ИССЛЕДОВАНИЕ ПАРАМЕТРОВ КОНТРАГИРОВАННОГО ДУГОВОГО РАЗРЯДА В ФОРВАКУУМНОМ ДИАПАЗОНЕ ДАВЛЕНИЙ А Р. Казанар, С.Е. Разимар, Н.А. Париания	
А.Д. Казакив, С.Е. Газумив, П.А. Панченки	111

ИССЛЕДОВАНИЕ КОМПЕНСАЦИИ ДИФРАКЦИОННОЙ РАСХОДИМОСТИ ЛАЗЕРНЫХ ПУЧКОВ В СЕГНЕТОЭЛЕКТРИЧЕСКОМ КРИСТАЛЛЕ НИОБАТА ЛИТИЯ ПРИ ИЗМЕНЕНИИ ТЕМПЕРАТУРЫ Д.К. Романенко, М.Н. Гаппарова, А.В. Сокольников	114
МОДЕЛИРОВАНИЕ ВРЕМЕННОГО ОТКЛИКА НА ВОЗДЕЙСТВИЕ СВЕРХКОРОТКОГО ИМПУЛЬСА ДВУХ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ МОДАЛЬНЫХ ФИЛЬТРОВ С ПАССИВНЫМ ПРОВОДНИКОМ В ВЫРЕЗЕ ОПОРНОЙ ПЛОСКОСТИ М.А. Самойличенко, А.М. Заболоцкий	117
ТРАНСЛЯЦИЯ СПЕЦИФИКАЦИЙ С ЕСТЕСТВЕННОГО ЯЗЫКА В СЕМАНТИЧЕСКИЙ ПРЕДМЕТНО-ОРИЕНТИРОВАННЫЙ ЯЗЫК D0SL Д.Р. Серов	120
ИЗМЕНЕНИЕ МОДЕЛИ УГРОЗ В ГОСУДАРСТВЕННЫХ ИНФОРМАЦИОННЫХ СИСТЕМАХ, СВЯЗАННЫЕ С ИЗМЕНЕНИЯМИ 17 ПРИКАЗА ФСТЭК М.В. Солодков	123
СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕХНИЧЕСКИХ СРЕДСТВ КОНТРОЛЯ ЛОПАСТНЫХ ИЗДЕЛИЙ К.И. Хан, М.А. Кажмаганбетова	126
ОЦЕНКА ВЛИЯНИЯ МАГНИТНОЙ ПРОНИЦАЕМОСТИ ПОДЛОЖКИ НА ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ МИКРОПОЛОСКОВОГО МОДАЛЬНОГО ФИЛЬТРА Е.Б. Черникова, А.А. Квасников	129
ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТИ БАРЬЕРНЫХ КОНТАКТОВ К АРСЕНИДУ ГАЛЛИЯ А.Н. Шалев, О.Н. Минин	132
ПОВЫШЕНИЕ СТАБИЛЬНОСТИ РАБОТЫ ИСТОЧНИКА ЭЛЕКТРОНОВ С ПЛАЗМЕННЫМ КАТОДОМ ПУТЕМ ОТКЛОНЕНИЯ ПУЧКА ВЕДУЩИМ МАГНИТНЫМ ПОЛЕМ В.И. Шин, П.В. Москвин, С.Ю. Дорошкевич	135
МЕТОДИКА ОПРЕДЕЛЕНИЯ УГРОЗ ИНФОРМАЦИИ И ЕЕ НОСИТЕЛЯМ С.И. Штыренко	138
ОЦЕНКА РАБОТЫ ПРОГРАММНОГО КОМПЛЕКСА ПО РАСПОЗНАВАНИЮ НОТ А.Ю. Якимук	141

АНАЛИТИЧЕСКАЯ МОДЕЛЬ ДЛЯ ОЦЕНКИ ЭФФЕКТИВНОСТИ ЭКРАНИРОВАНИЯ МНОГОСЛОЙНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

А.А. Иванов, А.В. Демаков

Научный руководитель: доцент, к.т.н., М.Е. Комнатнов Томский государственный университет систем управления и радиоэлектроники, Россия, г. Томск, пр. Ленина, 40, 634050 E-mail: <u>anton.ivvv@gmail.com</u>

ANALYTICAL MODEL FOR ESTIMATING SHIELDING EFFECTIVENESS OF MULTILAYER COMPOSITE MATERIALS

A.A. Ivanov, A.V. Demakov

Scientific Advisor: assistant professor, Ph.D., M.E. Komnatnov

Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin str., 40, 634050 E-mail: anton.ivvv@gmail.com

Abstract. The paper presents an analytical model for estimating shielding effectiveness of multilayer composite materials. This model was validated on the example of single-layer and two-layer structures. The results obtained by the presented model and in a computational experiment using a coaxial cell are in good agreement.

Введение. Экранирующие конструкции (ЭК) широко используются для защиты узлов и блоков радиоэлектронных средств (РЭС) от воздействия излучаемых электромагнитных помех. В качестве материалов для изготовления ЭК применяются металлы и их сплавы, которые отличаются высокой эффективностью экранирования (ЭЭ), однако обладают значительной массой. С целью уменьшения массы при разработке ЭК применяются многослойные полимерные композиционные материалы (КМ) [1]. Традиционно, экранирующие свойства КМ определяются при помощи измерений по стандартам MIL-STD-285, IEEE-STD-299, ASTM ES7 и ASTM D 4935. Однако зачастую выполнение подобных измерений невозможно, в особенности на ранних этапах проектирования РЭС. В таких случаях для предварительной оценки ЭЭ наиболее предпочтительно использовать аналитические модели, поскольку они не требуют значительных вычислительных ресурсов [2]. Однако существующие модели [3–5] позволяют вычислить ЭЭ только для многослойных экранов, выполненных из металла. Целью данной работы является разработка аналитической модели для оценки ЭЭ многослойных полимерных КМ.

Аналитическая модель. Согласно [4] плоский экран толщиной t при падении на него плоской электромагнитной волны может быть представлен в виде отрезка двухпроводной линии передачи (ЛП) длиной t с волновым сопротивлением Z и комплексной постоянной распространения k. Тогда, исходя из эквивалентности телеграфных уравнений и уравнений Максвелла для гармонических колебаний, ЭЭ может быть вычислена из напряжений и токов в ЛП. При этом если электромагнитный экран выполнен из i слоев, то он может быть представлен в виде i отрезков ЛП, соединенных последовательно (рис. 1). В этом случае, для расчета напряжений и токов удобно использовать A-форму записи параметров четырехполюсников. Для набора из i-отрезков ЛП A-параметры могут быть определены как [3]

48 ХVІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \prod_{n=1}^{i} \begin{bmatrix} \cosh(k_n t_n) & Z_n \sinh(k_n t_n) \\ \frac{\sinh(k_n t_n)}{Z_n} & \cosh(k_n t_n) \end{bmatrix}.$$

Предполагая, что каждый слой КМ является однородным и изотропным, волновое сопротивление и постоянная распространения в *i*-ом слое могут быть вычислены как [6]

$$Z = Z_0 \sqrt{\mu_r / \varepsilon_r} ,$$

$$k = j 2\pi f \sqrt{\mu_r \varepsilon_r} c^{-1} ,$$

где $Z_0=120\pi$ Ом, c – скорость света в свободном пространстве, f – частота источника воздействия, μ_r и ε_r – относительные магнитная и диэлектрическая проницаемости *i*-го слоя КМ.

Рис. 1. Экран из многослойного КМ (а) и его эквивалентная схема (б)

Исходя из телеграфных уравнений с учетом отражений на границах между слоями КМ, ЭЭ многослойного экрана (рис. 1*a*) может быть вычислена как [3]

$$SE = 20 \lg \left| \frac{V_{in}}{V_{out}} \right| = 20 \lg \left| \frac{a_{21}Z_0^2 + a_{22}Z_0 + a_{11}Z_0 + a_{12}}{2Z_0} \right|,$$

где V_{in} , V_{out} – входное и выходное напряжения в эквивалентной схеме (рис. 16).

Тестирование модели. Для тестирования модели вычислена ЭЭ четырех однослойных КМ (t=2 мм) со следующими параметрами: 1) $\mu_r = 20$, $\varepsilon_r = 1$; 2) $\mu_r = 8$, $\varepsilon_r = 1$; 3) $\mu_r = 1$, $\varepsilon_r = 15$; 4) $\mu_r = 1$, $\varepsilon_r = 10$. Сравнивались результаты, полученные по этой модели и в рамках вычислительного эксперимента с использованием электродинамической модели коаксиальной камеры [7]. Полученные результаты представлены на рис. 2. Видно, что зависимости хорошо согласуются, а отличие не превышает 0,8 дБ.

Рис. 2. Частотные зависимости ЭЭ для КМ: 1 (а), 2 (б), 3 (в) и 4 (г), полученные по аналитической модели (—) и с помощью электродинамической модели коаксиальной камеры (––)

Россия, Томск, 21-24 апреля 2020 г.

ХVІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Далее, с помощью предложенной аналитической модели и электродинамической модели коаксиальной камеры, выполнены вычисления ЭЭ двухслойных композитных материалов ($t_1=t_2=1$ мм) со следующими параметрами: 1) $\mu_{r1}=20$, $\varepsilon_{r1}=1$, $\mu_{r2}=1$ и $\varepsilon_{r2}=20$; 2) $\mu_{r1}=2$, $\varepsilon_{r1}=4$, $\mu_{r2}=1$ и $\varepsilon_{r2}=8$. Полученные частотные зависимости ЭЭ представлены на рис. 3. Видно, что зависимости полностью согласуются, а отличие не превышает 0,1 дБ.

Рис. 3. Частотные зависимости ЭЭ двухслойных КМ: 1 (а) и 2 (б), полученные по аналитической модели (—) и в результате вычислительного эксперимента (- –)

Заключение. Разработана аналитическая модель для оценки ЭЭ полимерных многослойных экранирующих КМ. Выполнены вычисления ЭЭ шести материалов с различными электрофизическими параметрами. Показано хорошее согласование между результатами, полученными предложенной моделью и с помощью электродинамической модели коаксиальной камеры. Результаты данного исследования могут быть применены для создания высокоэффективных ЭК современных РЭС.

Разработка аналитической модели выполнена в рамках гранта РНФ № 19-79-10162 в ТУСУРе, вычислительный эксперимент выполнен в рамках гранта РФФИ №18-38-00619.

СПИСОК ЛИТЕРАТУРЫ

- Bremner P.G. et al. Shielding effectiveness when to stop blocking and start absorbing // IEEE Int. Symp. Electromagn. Compat., Signal & Power Integr. (EMC SIPI). – 2019. – P. 1–8.
- Комнатнов М.Е., Газизов Т.Р., Дементьев А.С. Моделирование эффективности экранирования металлической пластиной для бортовой аппаратуры космического аппарата // Доклады ТУСУР. – 2011. – № 2 (24). – Ч. 1. – С. 133–136.
- Shi D., Gao Y., Shen Y. Determination of shielding effectiveness of multilayer shield by making use of transmission line theory // Int. Symp. Electromagn. Compat. Electomagn. Ecolog. – 2007. – P. 1–3.
- 4. Schulz R.B., Plantz V.C., Brush D.R. Shielding theory and practice // IEEE Transactions on Electromagnetic Compatibility. 1988. Vol. 30, No. 3. P. 187–201.
- Lu M. Analysis of shielding effectiveness of multi layer planar shields to normally incident plane waves // Journal of Microwaves. – 1999. – Vol. 15, No. 2. – P. 1–4.
- 6. Collin R.E. Field theory of guided waves. 2nd edition. NY: Wiley IEEE Press, 1990. 864 p.
- Demakov A.V., Komnatnov M.E. Development of an improved coaxial cell for measuring the shielding effectiveness of materials // IOP Conference series: materials science and engineering. – 2020. – Vol. 734. – P. 1–7.