УДК 621.391.825

М.А. Самойличенко

Экранированный модальный фильтр на двухсторонней печатной плате

Оценено влияние соединения опорных проводников с помощью экрана в модальном фильтре (МФ) на двухсторонней печатной плате. Рассмотрены две структуры МФ: с четырьмя опорными проводниками (по краям МФ на внешних слоях) и с удалением двух диагональных опорных проводников. Выполнено моделирование распространения сверхкороткого импульса в таких структурах. Показано, что соединение опорных проводников между собой с помощью экрана может фактически устранить их влияние, поскольку выполнять функцию опорных проводников может экран.

Ключевые слова: модальная фильтрация, сверхкороткий импульс, опорный проводник, экран.

Невыполнение требований электромагнитной совместимости (ЭМС) может привести к сбою электроники в разных сферах, например, воздушного, железнодорожного транспорта, автоматических производственных линий, систем управления промышленных объектов и объектов энергетики, медицинского оборудования. За счет перехода к цифровым устройствам проблема ЭМС особенно обостряется: под воздействием помех электроника может срабатывать ложно и даже выходить из строя. ЭМС нарушается, если уровень помех слишком высок и помехоустойчивость оборудования недостаточна. В этом случае возможны нарушения в работе компьютеров, цифровых устройств релейной защиты, автоматизированных систем управления, что может привести к катастрофическим последствиям [1].

Особо опасными являются широкополосные помехи, которые обычно проявляются в виде отдельных импульсов или их последовательности. Частным случаем таких помех являются сверхкороткие импульсы (СКИ) [2]. Сбои, возникающие при импульсных помехах в электронных устройствах, вызывают повреждение, рассеивание мощности и разрушение устройств [3]. Эффекты повреждения обычно возникают, когда импульсная помеха попадает в оборудование в результате индуктивного взаимодействия (в линиях питания или передачи данных). После этого электронные компоненты пытаются обработать импульсную помеху как действительную логическую команду. В результате происходит блокирование системы, возникают сбои, выдаются ошибочные данные на выходе, теряются или повреждаются файлы, а также возникают другие нежелательные эффекты. Материалы, используемые для изготовления электронных компонентов, могут выдержать определенное число повторяющихся энергетических всплесков, но недолго. Происходящий замедленный распад в конечном итоге приведет к выходу компонентов из строя. Эффекты разрушения обобщают все случаи, когда импульсные помехи с высокими уровнями энергии вызывают немедленный отказ оборудования. Часто это видимые физические повреждения, например, сгоревшие или треснувшие платы и компоненты персонального компьютера, оплавленные электронные компоненты и др. Поэтому защита от электромагнитных помех очень актуальна.

Хорошо подавляют СКИ новые защитные устройства, называемые модальными фильтрами (МФ) [4]. Это достигается за счет разложения на моды, каждая из которых распространяется со своей задержкой. Количество мод на выходе МФ определяется количеством проводников в линии. Технология модальной фильтрации исследуется в разных направлениях: МФ на печатных платах, меандровые линии, модальное резервирование, МФ в виде кабелей. Также исследуются МФ на двухсторонних печатных платах (ПП). Такие МФ имеют ряд достоинств, например: простота реализации, одинаково хорошее подавление СКИ вне зависимости от количества проводников в МФ [5], возможность разного соединения опорных проводников. Так, к примеру, ранее исследовался случай, когда опорные проводники соединялись только на концах МФ. Такой случай позволяет наблюдать, при некоторых параметрах в поперечном сечении (например, малом значении s), на выходе МФ большее количество мод. Также в такой их реализации имеет значение количество опорных проводников [6]. Однако ранее не исследовался случай, когда все опорные проводники соединены между собой по всей длине МФ. Так, их можно соединить между собой, например, с помощью экрана или металлизированных отверстий.

Цель работы – оценить влияние соединения опорных проводников с помощью экрана в МФ на двухсторонней ПП.

Для моделирования структуры выбран МФ со всеми опорными проводниками и МФ без двух диагональных опорных проводников (удаление опорных проводников позволяет уменьшить массу МФ). Поперечные сечения МФ и схема включения приведены на рис. 1. Параметры поперечного сечения: s – расстояние между проводниками, w – ширина проводников, h – толщина диэлектрика, h1 – расстояние от проводника до экрана, ε_r – относительная диэлектрическая проницаемость, t – толщина проводников. В качестве диэлектрика выбран стеклотекстолит.

Активный проводник соединен с источником импульсных сигналов, представленным на схеме идеальным источником ЭДС E и внутренним сопротивлением R1. На другом конце активный проводник соединен с нагрузкой R3. Значения сопротивлений R1=R2=R3=R4=50 Ом. На вход МФ подавался им-

XVII Международная научно-практическая конференция, 17–19 ноября 2021 г.

пульс амплитудой ЭДС 2 В и общей длительностью 500 пс. Моделирование выполнено с помощью квазистатического подхода, реализованного в системе TALGAT [7]. Потери в проводниках и диэлектриках не учитывались.

Рис. 1. Поперечные сечения МФ (проводники: О – опорный, П – пассивный, А – активный) со всеми опорными проводниками (*a*), без двух диагональных (б) и схема включения МФ (*e*)

Результаты моделирования

Моделирование выполнялось при одинаковых параметрах для двух МФ: t = 35 мкм, w = 1500 мкм, s = 500 мкм, h = 500 мкм, h1 = 500 мкм, $\varepsilon_r = 4,5$. Полученные значения амплитуд импульсов и погонные задержки приведены в табл. 1, а формы напряжения на входе и выходе МФ – на рис. 2.

Погонные задержки мод (т <i>i</i> , нс/м) и амплитуды	1
импульсов (<i>Ui</i> , В) для двух МФ	

МΦ	τ_1	τ_2	U_1	U_2
Со всеми опорными	4,085	5,932	0,493	0,399
Без двух диагональных	4,013	5,935	0,490	0,399

Видно, что на выходе МФ два импульса. Амплитуда первой («быстрой») моды, которая распространяется преимущественно в воздухе, одинакова для двух МФ, однако время прихода отличается. Это обусловлено малым значением *s*, из-за чего образуется разная торцевая связь с опорными проводниками (в МФ со всеми опорными проводниками она больше, а без диагональных – меньше). Опорные проводники заставляют первую моду больше распространяться в диэлектрике. Поэтому в МФ без двух диагональных проводников первая мода приходит быстрее. Вторая мода, которая распространяется преимущественно в диэлектрике, приходит в одно время и с одинаковой амплитудой.

Влияние расстояния до опорных проводников

Значение *s* изменялось в диапазоне 600–2000 мкм с шагом 100 мкм. В табл. 2 сведены полученные значения амплитуд импульсов и погонных задержек при изменении *s* для двух МФ. Видно, что изменение *s* влияет больше всего на время прихода первой моды.

Таблица 2

Погонные задержки мод (т_i, нс/м) и амплитуды импульсов (U_i, B) для двух МФ при разных s

<i>s</i> ,	Со всеми опорными				Без двух диагональных			
МКМ	τ_1	τ_2	U_1	U_2	τ_1	τ_2	U_1	U_2
600	4,019	5,934	0,491	0,399	3,961	5,936	0,489	0,399
700	3,966	5,936	0,489	0,399	3,919	5,937	0,488	0,399
800	3,923	5,936	0,488	0,399	3,885	5,937	0,487	0,399
900	3,889	5,937	0,487	0,399	3,858	5,937	0,486	0,399
1000	3,861	5,937	0,486	0,399	3,836	5,937	0,486	0,399
1100	3,838	5,937	0,485	0,399	3,819	5,937	0,484	0,399
1200	3,821	5,937	0,485	0,399	3,805	5,937	0,484	0,399
1300	3,806	5,937	0,484	0,399	3,794	5,937	0,484	0,399
1400	3,795	5,937	0,484	0,399	3,785	5,937	0,483	0,399
1500	3,786	5,937	0,484	0,399	3,779	5,937	0,484	0,399
1600	3,779	5,937	0,484	0,399	3,772	5,937	0,483	0,399
1700	3,773	5,937	0,484	0,399	3,768	5,937	0,483	0,399
1800	3,768	5,937	0,484	0,399	3,764	5,937	0,484	0,399
1900	3,765	5,937	0,484	0,399	3,761	5,937	0,484	0,399
2000	3,762	5,937	0,483	0,399	3,759	5,937	0,483	0,399

На рис. 3 приведена зависимость τ_1 от *s*. Из графика видно, что с увеличением *s* значения τ_1 становятся меньше и сближаются. Это объясняется тем, что при отдалении опорных проводников МФ становятся более симметричными относительно их центра. Как следствие, на выходе двух МФ можно наблюдать одинаковые отклики. Формы напряжения на входе и выходе двух МФ при *s* = 600 и 2000 мкм показаны на рис. 4.

Заключение

В работе показано, что соединение опорных проводников с помощью экрана в МФ на двухсторонней

XVII Международная научно-практическая конференция, 17–19 ноября 2021 г.

ПП позволяет достичь примерно одинакового разложения СКИ вне зависимости от количества опорных проводников. Их влияние уменьшается и фактически заменяется экраном. Это делает актуальным дальнейшие исследования влияния экрана на разложение СКИ в таких МФ.

Рис. 4. Формы напряжения на входе МФ (—) и выходе МФ со всеми опорными проводниками (-) и без двух диагональных (- -) при s = 600 (a), 2000 мкм(δ)

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-37-90033.

Литература

1. Халилов Ф.Х. Электромагнитная совместимость электроэнергетики, техносферы и биосферы: учеб. пособие. – СПб.: Изд. НОУ «Центр подготовки кадров энергетики», 2014. – 190 с.

ЭЛЕКТРОННЫЕ СРЕДСТВА И СИСТЕМЫ УПРАВЛЕНИЯ

2. Гизатуллин З.М. Помехоустойчивость электронных средств при воздействии наносекундных электромагнитных импульсов по сети питания / З.М. Гизатуллин, И.И. Набиев, М.Г. Нуриев // Техника и технология: Новые перспективы развития. – 2014. – № 12. – С. 107–110.

3. Защита линий передачи от импульсных помех [Электронный ресурс]. – Режим доступа: https://download.schneiderelectric.com/files?p_File_Name=SADE5TNRN6_ R0_RU.pdf&p_Doc_Ref=SPD_SADE5TNRN6_RU, свободный доступ (дата обращения: 05.09.2021).

4. Gazizov A.T. New printed structures for protection against UWB pulses / A.T. Gazizov , A.M. Zabolotsky, O.A. Gazizova // Proc. 16th International conference of young specialists on micro/nanotechnologies and electron devices. – Erlagol, Russia. – 2015. – P. 120–122.

5. Самойличенко М.А. Модальные фильтры для защиты от сверхкоротких импульсов: исследование возможностей эффективного использования в двусторонних печатных платах // Системы управления, связи и безопасности. – 2021. – № 4. – С. 58–71.

6. Samoylichenko M.A. Parametric and structural optimization of the modal filter on a double-sided printed circuit board / M.A. Samoylichenko, T.R. Gazizov // Journal of Physics: Conference Series. – 2021. – Vol. 1862, No. 012020.

7. Gazizov T.R. Solving the complexity problem in the electronics production process by reducing the sensitivity of transmission line characteristics to their parameter variations / T.R. Gazizov, I.Ye. Sagiyeva, S.P. Kuksenko // Complexity. – 2019. – 11 p.

Самойличенко Мария Александровна

Аспирант каф. телевидения и управления (ТУ) ТУСУРа ORCID: 0000-0002-0889-5983 Эл. почта: 1993mary2011@mail.ru