

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых

РОССИЯ, ТОМСК, 21 – 24 апреля 2020 г.

Том 7. IT - технологии и электроника

PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT

Abstracts XVII International Conference of Students and Young Scientists

RUSSIA, TOMSK, April 21 – 24, 2020 Volume 7. IT - technologies and Electronics

Национальный исследовательский Томский государственный университет

MINISTRY OF SCIENCE AND EDUCATION OF THE RUSSIAN FEDERATION

PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT

Abstracts

XVII International Conference of students, graduate students and young scientists

April 21-24, 2020

Russia, Tomsk

Volume 7. Information Technologies and Electronics

Tomsk Tomsk State University Publishing House control system and radioelectronics 2020 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Сборник научных трудов

XVII Международной конференции студентов, аспирантов и молодых ученых

21-24 апреля 2020 г.

Россия, Томск

Том 7. IT-технологии и электроника

Томск Издательство Томского государственного университета систем управления и радиоэлектроники 2020

Редакционная коллегия: И. А. Курзина, доктор физико-математических наук, доцент; Г. А. Воронова, кандидат химических наук, доцент; С. А. Поробова

Перспективы развития фундаментальных наук : сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, 21–24 апреля 2020 г., Россия, Томск. В 7 т. Т. 7. ITтехнологии и электроника / Нац. исслед. Том. политехн. ун-т, Нац. исслед. Том. гос. ун-т, Том. гос. архитектурно-строит. ун-т, Томск. гос. ун-т систем упр. и радиоэлектроники, Том. нац. исслед. мед. центр РАН ; под ред. И.А. Курзиной, Г.А. Вороновой. – Томск : Изд-во Томск. гос. ун-та систем упр. и радиоэлектроники, 2020. – 143, [3] с.

ISBN 978-5-86889-871-6 (т. 7)

ISBN 978-5-86889-864-8

Сборник содержит труды участников XVII Международной конференции студентов, аспирантов и молодых учёных «Перспективы развития фундаментальных наук», представленные на секции «IT-технологии и электроника».

Для студентов, аспирантов, молодых ученых и преподавателей, специализирующихся в области интеллектуальных систем управления, автоматизированных систем обработки информации и управления, информационной безопасности, наноэлектроники, получения и исследования наноматериалов, оптоэлектроники и нанофотоники, плазменной эмиссионной электроники, интеллектуальной силовой электроники, СВЧэлектроники, систем радиолокации, телевидения, радиосвязи, радиометрии и распространения волн радиочастотного и акустического диапазонов, а также импульсных и радиочастотных измерениях.

> УДК 501:004 (063) ББК 72:32.81л0

Научное издание ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК Сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых Подписано в печать 15.06.20. Формат 60х84/8. Усл. печ. л. 16,97. Тираж 100. Заказ 129.

Томский государственный университет систем управления и радиоэлектроники. 634050, г. Томск, пр. Ленина, 40. Тел. (3822) 533018.

ISBN 978-5-86889-871-6 (т. 7) ISBN 978-5-86889-864-8

ХVІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

СОДЕРЖАНИЕ

ANALYSIS AND DIAGNOSIS OF CYSTIC FIBROSIS OF THE LUNGS WITH IMPROVED DEEP LEARNING TECHNIQUES N.J. Francis, N.S. Francis, M. Saqib	8
BRONCHOPULMONARY SEGMENTATION OF THE LUNGS BY USING TERNARY NET WEIGHTS IN MASK-R NEURAL NETWORK N.S. Francis, N.J. Francis, M. Saqib	11
ДВУХДИАПАЗОННАЯ АНТЕННА ДИПОЛЬНОГО ТИПА С КОНЦЕВЫМ ПИТАНИЕМ С.А. Алексейцев	14
COMPARISON OF QUASISTATIC AND ELECTRODYNAMIC ESTIMATIONS OF THE RADIATED EMISSION FROM TWO COUPLED WIRES OVER A GROUND PLANE Alhaj hasan Adnan	17
ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК FLIP-CHIP СВЕТОДИОДОВ Н.К. Афанасьев, А.А. Томашевич	20
ОПТИМИЗАЦИЯ ПАРАМЕТРОВ НЕЧЕТКОГО КЛАССИФИКАТОРА КОМБИНАЦИЕЙ АЛГОРИТМОВ ГРАВИТАЦИОННОГО ПОИСКА И ПРЫГАЮЩИХ ЛЯГУШЕК М.Б. Бардамова	23
ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ ИЗМЕНЕНИЙ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ, ИНДУЦИРОВАННЫХ ПРИ ФОРМИРОВАНИИ КАНАЛЬНЫХ ВОЛНОВОДОВ В ПОВЕРХНОСТНО ЛЕГИРОВАННОМ КРИСТАЛЛЕ НИОБАТА ЛИТИЯ	
А.Д. Безпалый РАСПОЗНАВАНИЕ АВТОМОБИЛЬНЫХ НОМЕРОВ МЕТОДОМ ВИОЛЫ-ДЖОНСА С.И. Беляев	26 29
ШИРОКОАПЕРТУРНЫЙ УСКОРИТЕЛЬ ЭЛЕКТРОНОВ НА ОСНОВЕ ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ С ВЫВОДОМ ПУЧКА В АТМОСФЕРУ С Ю. Лараникарии	32
МЕХАНИЗМЫ ЗАЩИТЫ ОТ УГРОЗ В КОМПЬЮТЕРНОЙ СЕТИ А.С. Дыхова, Д.Ю. Попова, А.К. Новохрестов	35
ПРЕОБРАЗОВАНИЕ НС ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ПОРОШКАХ НЕЛИНЕЙНЫХ КРИСТАЛЛОВ СКАНДОБОРАТОВ А.Я. Жамус, Д.М. Ежов, А.А. Гореявчева	38
ИСПОЛЬЗОВАНИЕ N-НОРМ ДЛЯ АНАЛИЗА УСТРОЙСТВА С ОДНОКРАТНЫМ МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ А.В. Жечева, Е.С. Жечев	41
ПАРАМЕТРЫ ПУЧКОВОЙ ПЛАЗМЫ, СОЗДАВАЕМОЙ ПРИ ТРАНСПОРТИРОВКЕ НЕПРЕРЫВНОГО ПУЧКА ЭЛЕКТРОНОВ В ДИАПАЗОНЕ ДАВЛЕНИЙ СРЕДНЕГО ВАКУУМА А.А. Зенин, Е.М. Содокина	44
АНАЛИТИЧЕСКАЯ МОДЕЛЬ ДЛЯ ОЦЕНКИ ЭФФЕКТИВНОСТИ ЭКРАНИРОВАНИЯ МНОГОСЛОЙНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ А.А. Иванов, А.В. Демаков	47
ОЦЕНКА ВЛИЯНИЯ НЕИДЕАЛЬНОСТИ ПАРАМЕТРОВ ВЫСОКОЧАСТОТНЫХ УЗЛОВ ВХОДНОГО БЛОКА ИЗМЕРИТЕЛЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ НА ТОЧНОСТЬ ИЗМЕРЕНИЙ	50
М.А. Канина СБОР ДАННЫХ В СИСТЕМЕ ГЛОБАЛЬНОГО ПОЗИЦИОНИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНО ОПРЕДЕЛЯЕМОЙ РАДИОСИСТЕМЫ М.М. Канит	50
ПОТЕНЦИАЛ ИЗОЛИРОВАННОЙ МИШЕНИ, ОБЛУЧАЕМОЙ ЭЛЕКТРОННЫМ ПУЧКОМ В СРЕДНЕМ ВАКУУМЕ, ПРИ НАЛИЧИИ ДОПОЛНИТЕЛЬНОГО ЭЛЕКТРОДА ВБЛИЗИ МИШЕНИ	55
К.И. Карпов, Д.Б. Золотухин	56

6

КЛАСТЕРИЗАЦИЯ ЖАЛОБ ПАЦИЕНТОВ ИЗ ДОКУМЕНТА «ОСМОТР ЛЕЧАЩИМ ВРАЧОМ» Е.В. Кащеева	59
ИССЛЕДОВАНИЕ РАЗЛИЧНЫХ АРХИТЕКТУР ДЛЯ СИСТЕМЫ ОПРЕДЕЛЕНИЯ ПОЛЬЗОВАТЕЛЯ ПО ЕГО ПОДПИСИ А.А. Коновалов, Б.С. Лодонова, Я.А. Усольцев	62
РАЗРАБОТКА ТЕХНОЛОГИИ И ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ ТРЕХМЕРНОЙ РЕКОНСТРУКЦИИ ФОРМЫ СТОПЫ ЧЕЛОВЕКА ПО ВИДЕОПОТОКУ А.В. Куртукова, Л.С. Шилов, А.М. Федотова	65
РАЗРАБОТКА ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ АНАЛИЗА ТОНАЛЬНОСТИ ОТЗЫВОВ ПОЛЬЗОВАТЕЛЕЙ Н.С. Мамеев	68
ИСПОЛЬЗОВАНИЕ ECLIPSE THEIA ДЛЯ СОЗДАНИЯ ИНТЕГРИРОВАННОЙ СРЕДЫ РАЗРАБОТКИ ДЛЯ ЯЗЫКА REFLEX К.В. Марченко	71
ВЛИЯНИЕ ТОЛЩИНЫ Al ₂ O ₃ -Ti КОМПОЗИТА НА ВОЗМОЖНОСТЬ СПЕКАНИЯ ЕГО ЭЛЕКТРОННО-ЛУЧЕВЫМ МЕТОДОМ В ФОРВАКУУМЕ Г.Ф. Марчук, В.Т. Чан	74
АНАЛИЗ ЗАДЕРЖЕК ИМПУЛЬСОВ РАЗЛОЖЕНИЯ В СИСТЕМЕ КАБЕЛЬ – ПЛАТА С МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ А.В. Медведев	78
АВТОМАТИЗАЦИЯ СОЗДАНИЯ ОТЧЕТОВ ПО ЭФФЕКТИВНОСТИ РАБОТЫ РЕКЛАМНЫХ КАМПАНИЙ М.Г. Москалев	81
КОРПОРАТИВНЫЙ ШЛЮЗ НА БАЗЕ ОТЕЧЕСТВЕННОГО СЕРВЕРНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ Д.А. Овчинников	84
ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СПЕКТРОВ ИЗЛУЧЕНИЯ ПЛАЗМЫ, ГЕНЕРИРУЕМОЙ ИМПУЛЬСНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ В ФОРВАКУУМНОМ ДИАПАЗОНЕ ДАВЛЕНИЙ А.В. Казаков, А.В. Медовник, Н.А. Панченко	87
ЦИФРОВАЯ ЛОГИСТИКА В УПРАВЛЕНИИ ЦЕПЯМИ ПОСТАВОК: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ Ю.В. Парфентьев	90
ЧЕТЫРЕХЛУЧЕВАЯ ФАР С ИЗЛУЧАТЕЛЯМИ КОНЦЕВОГО ТИПА Ю.Н. Паршин	93
ИНФОРМАЦИОННАЯ СИСТЕМА ОТДЕЛА КАДРОВ УНИВЕРСИТЕТА ПАТТИМУРЫ, АМБОН - ИНДОНЕЗИЯ В Э. Паттиралжаване	96
СИСТЕМА ПЕРСОНАЛИЗАЦИИ ЭЛЕКТРОННОГО ПОРТФОЛИО НА ОСНОВЕ ЗАГРУЖЕННЫХ МАТЕРИАЛОВ	
Ф.Д. Пираков ВЛИЯНИЕ СКОРОСТИ НАГРЕВА Al ₂ O ₃ -Ti КОМПОЗИТА НА ОДНОРОДНОСТЬ ЕГО СПЕКАНИЯ С ИСПОЛЬЗОВАНИЕМ ФОРВАКУУМНОГО ПЛАЗМЕННОГО ЭЛЕКТРОННОГО ИСТОЧНИКА А.А. Поддубнов, А.Е. Петров, В.Т. Чан	99 102
РАЗРАБОТКА ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ КЛАСТЕРИЗАЦИИ ПОТРЕБИТЕЛЕЙ ПО ИХ ОТНОШЕНИЮ К АСПЕКТАМ ПРОДУКТА К.Ю. Попова	105
АВТОМАТИЗАЦИЯ ПРОЦЕССА УСТАНОВКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ НА РАБОЧЕМ МЕСТЕ В КОРПОРОТИВНОЙ СЕТИ В.И. Пустынников	108
ИССЛЕДОВАНИЕ ПАРАМЕТРОВ КОНТРАГИРОВАННОГО ДУГОВОГО РАЗРЯДА В ФОРВАКУУМНОМ ДИАПАЗОНЕ ДАВЛЕНИЙ А Р. Казанар, С.Е. Разимар, Н.А. Париания	
А.Д. Казакив, С.Е. Газумив, П.А. Панченки	111

ИССЛЕДОВАНИЕ КОМПЕНСАЦИИ ДИФРАКЦИОННОЙ РАСХОДИМОСТИ ЛАЗЕРНЫХ ПУЧКОВ В СЕГНЕТОЭЛЕКТРИЧЕСКОМ КРИСТАЛЛЕ НИОБАТА ЛИТИЯ ПРИ ИЗМЕНЕНИИ ТЕМПЕРАТУРЫ Д.К. Романенко, М.Н. Гаппарова, А.В. Сокольников	114
МОДЕЛИРОВАНИЕ ВРЕМЕННОГО ОТКЛИКА НА ВОЗДЕЙСТВИЕ СВЕРХКОРОТКОГО ИМПУЛЬСА ДВУХ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ МОДАЛЬНЫХ ФИЛЬТРОВ С ПАССИВНЫМ ПРОВОДНИКОМ В ВЫРЕЗЕ ОПОРНОЙ ПЛОСКОСТИ М.А. Самойличенко, А.М. Заболоцкий	117
ТРАНСЛЯЦИЯ СПЕЦИФИКАЦИЙ С ЕСТЕСТВЕННОГО ЯЗЫКА В СЕМАНТИЧЕСКИЙ ПРЕДМЕТНО-ОРИЕНТИРОВАННЫЙ ЯЗЫК D0SL Д.Р. Серов	120
ИЗМЕНЕНИЕ МОДЕЛИ УГРОЗ В ГОСУДАРСТВЕННЫХ ИНФОРМАЦИОННЫХ СИСТЕМАХ, СВЯЗАННЫЕ С ИЗМЕНЕНИЯМИ 17 ПРИКАЗА ФСТЭК М.В. Солодков	123
СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕХНИЧЕСКИХ СРЕДСТВ КОНТРОЛЯ ЛОПАСТНЫХ ИЗДЕЛИЙ К.И. Хан, М.А. Кажмаганбетова	126
ОЦЕНКА ВЛИЯНИЯ МАГНИТНОЙ ПРОНИЦАЕМОСТИ ПОДЛОЖКИ НА ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ МИКРОПОЛОСКОВОГО МОДАЛЬНОГО ФИЛЬТРА Е.Б. Черникова, А.А. Квасников	129
ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТИ БАРЬЕРНЫХ КОНТАКТОВ К АРСЕНИДУ ГАЛЛИЯ А.Н. Шалев, О.Н. Минин	132
ПОВЫШЕНИЕ СТАБИЛЬНОСТИ РАБОТЫ ИСТОЧНИКА ЭЛЕКТРОНОВ С ПЛАЗМЕННЫМ КАТОДОМ ПУТЕМ ОТКЛОНЕНИЯ ПУЧКА ВЕДУЩИМ МАГНИТНЫМ ПОЛЕМ В.И. Шин, П.В. Москвин, С.Ю. Дорошкевич	135
МЕТОДИКА ОПРЕДЕЛЕНИЯ УГРОЗ ИНФОРМАЦИИ И ЕЕ НОСИТЕЛЯМ С.И. Штыренко	138
ОЦЕНКА РАБОТЫ ПРОГРАММНОГО КОМПЛЕКСА ПО РАСПОЗНАВАНИЮ НОТ А.Ю. Якимук	141

МОДЕЛИРОВАНИЕ ВРЕМЕННОГО ОТКЛИКА НА ВОЗДЕЙСТВИЕ СВЕРХКОРОТКОГО ИМПУЛЬСА ДВУХ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ МОДАЛЬНЫХ ФИЛЬТРОВ С ПАССИВНЫМ ПРОВОДНИКОМ В ВЫРЕЗЕ ОПОРНОЙ ПЛОСКОСТИ

<u>М.А. Самойличенко, А.М.</u> Заболоцкий

Научный руководитель: д.т.н. Т.Р. Газизов Томский государственный университет систем управления и радиоэлектроники Россия, г. Томск, пр. Ленина, 40, 634050 E-mail: <u>1993mary2011@mail.ru</u>

MODELING THE TIME RESPONSE TO ULTRASHORT PULSE EXCITATION OF TWO CASCADED MODAL FILTERS WITH A PASSIVE CONDUCTOR IN THE REFERENCE PLANE CUTOUT

M.A. Samoylichenko, A.M. Zabolotsky

Scientific Supervisor: Doctor of Science in Engineering T.R. Gazizov Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin ave., 40, 634050 E-mail: <u>1993mary2011@mail.ru</u>

Abstract. We consider protection of radio electronic equipment against conductive excitation of an ultrashort pulse (USP) by using a serial connection of 2 modal filters, which have a passive conductor in the cutout of the reference plane. We obtained the USP attenuation by factor 12,5.

Введение. Обеспечение электромагнитной совместимости (ЭМС) различной радиоэлектронной аппаратуры (РЭА) с каждым годом становится все более актуальным, т.к. стремительно растут количество, многообразие и сложность РЭА. Это приводит к появлению всё более разнообразных электромагнитных помех. Наиболее опасными являются кондуктивные помехи, в частности сверхкороткие импульсы (СКИ) [1]. Примерами проявления СКИ могут быть: отказ системы контроля и управления на производстве, отказ бортовых систем самолетов, сбои медицинской аппаратуры диагностики и жизнеобеспечения, сбои линии связи, потери информации в компьютере. Современные устройства защиты имеют крупные габариты и высокую стоимость, а также низкую радиационную стойкость из-за полупроводниковых элементов. Поэтому актуален поиск новых устройств защиты. Новым, простым и дешевым в реализации, средством защиты от СКИ является модальный фильтр (МФ). Один из простых вариантов МФ получается за счет модификации микрополосковой линии (МПЛ). Конструкция такого МФ образуется за счет двух вырезов в плоскости земли обычной МПЛ, которые формируют между собой пассивный проводник. С помощью такого МФ достигнуто ослабление СКИ в 4,54 раза при слабой связи [2] и в 5 раз при сильной связи [3] между активным и пассивным проводниками. По полученным результатам изготовлено 2 макета МФ с разной связью и проведен натурный эксперимент. Так как разная связь между проводниками обеспечивает не только разное ослабление, но и разную разность задержек мод, (что позволит избежать наложения импульсов на выходе второго МФ) можно достичь большего ослабления за счет двух последовательно соединенных МФ.

Цель данной работы – выполнить такое исследование.

118 XVII МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Структура и схема для исследования. На рис. 1(*a*) приведено поперечное сечение МФ, где ε_r – относительная диэлектрическая проницаемость подложки, w_1 , w_2 , w_3 – ширины проводников, t – толщина подложки, s – разнос проводников. На рис 1(δ) приведена схема включения двух МФ длиной *l* с матрицами погонных параметров L, C. В качестве материала подложки выбран фольгированный стеклотекстолит (ε_r =4,5), из-за его дешевизны, доступности и широкого применения. R1=R2=R4=R6=R8=R9=50 Ом, а для соединения крайних проводников R3=R5=R7=R10=1 мОм. Входное воздействие представляет собой трапециевидный импульс с параметрами: амплитуда ЭДС – 2 В, время нарастания – 50 пс, плоской вершины – 100 пс, спада – 50 пс.

Рис. 1. Поперечное сечение (а) и схема включения (б) МФ. Проводники: А – активный, П – пассивный, О – опорный

Вычисление параметров и форм сигнала выполнено с помощью квазистатического подхода в системе TALGAT [4]. Потери в проводниках и диэлектриках не учитывались.

Результаты моделирования. Моделирование выполнялось по параметрам изготовленных макетов МФ, а именно t=35 мкм, h=0,18 мм, l=30 см при $w_1=w_2=w_3=1$ мм и s=0,5 мм (для МФ1 – со слабой связью) и $w_1=w_2=3,5$ мм, $w_3=0,5$ мм и s=3,0 мм (для МФ2 – с сильной связью).

На рис. 2 показаны результаты моделирования отклика. В узле V5 (после МФ1) наблюдаются 2 импульса. Это, объясняется тем, что 2 быстрые моды приходят примерно одновременно, образуя на выходе 1 импульс со сложением амплитуд, а медленная – позже. Из этого можно сделать вывод, что на выход МФ2 (узел V10) придет 4 импульса. В табл. 1 приведены погонные задержки мод для МФ1 ($\tau 1_i$) и МФ2 ($\tau 2_i$), что позволит рассчитать время прихода импульсов на выходе МФ2.

Таблица 1

ΜΦ1			ΜΦ2		
$\tau 1_1$	τl_2	τl_3	$\tau 2_1$	$\tau 2_2$	τ23
3,95	4,20	5,59	3,67	3,72	6,87

Погонные задержки мод для $M\Phi 1 (\tau l_i) u M\Phi 2 (\tau 2_i) (\mu c/m)$

Время прихода импульсов на выходе МФ2 (узел V10) рассчитывалось по формулам:

$$t_1 = \tau 1_1 l + \tau 2_1 l = 2,28$$
 нс, $t_2 = \tau 1_1 l + \tau 2_2 l = 2,30$ нс, $t_3 = \tau 1_1 l + \tau 2_3 l = 3,24$ нс,

$$t_4 = \tau 1_2 l + \tau 2_1 l = 2,36$$
 HC, $t_5 = \tau 1_2 l + \tau 2_2 l = 2,37$ HC, $t_6 = \tau 1_2 l + \tau 2_3 l = 3,32$ HC,

 $t_7 = \tau 1_3 l + \tau 2_1 l = 3,08$ нс, $t_8 = \tau 1_3 l + \tau 2_2 l = 3,09$ нс, $t_9 = \tau 1_3 l + \tau 2_3 l = 4,04$ нс.

В узле V10 воздействующий импульс раскладывается на 4 импульса с попарно одинаковыми амплитудами (U1 (для t₅)=0,08 B, U2 (для t₈)=0,08 B, U3 (для t₆)=0,05 B, U4 (для t₉)=0,05 B). Однако t₈ и t₆ не наложились друг на друга из-за малой длительности воздействующего импульса.

Россия, Томск, 21-24 апреля 2020 г.

ХVІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК» 119

Рис. 2. Формы напряжения на входе МФ1 (-), выходе МФ1 (- -) и выходе МФ2 (-)

Заключение. Таким образом, в работе показана возможность разложения СКИ в последовательном соединении двух МФ одинаковой длины, с реализацией пассивного проводника в вырезе опорной плоскости. Разложение достигнуто за счет увеличения связи между проводниками МФ2, что позволяет увеличить разность задержек мод. Достигнуто ослабление в 12,5 раза по отношению к половине ЭДС. Полученные результаты делают актуальным и дальнейшие исследования.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-37-70020.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gizatullin Z. M., Gizatullin R.M. Investigation of the immunity of computer equipment to the power-line electromagnetic interference // Journal of Communications Technology and Electronics, no. 5, pp. 546–550, 2016.
- Samoylichenko M.A., Gazizov T.R. Simulation of broad-side coupled modal filter with passive conductor in reference plane cutout // IOP Conference Series: Materials Science and Engineering. – 2019. – P. 1–7. doi: 10.1088/1757-899X/560/1/012040.
- Samoylichenko M.A. Influence of boundary conditions and coupling enhancement on the attenuation of a modal filter with a passive conductor in the reference plane cutout // Proc. of IEEE 2019 International multiconference on engineering, computer and information sciences (SIBIRCON). – Russia, Tomsk, Oct. 23–24, 2019. – P. 0237–0240. doi: 10.1109/SIBIRCON48586.2019.8958044.
- Kuksenko S.P. Preliminary results of TUSUR University project for design of spacecraft power distribution network: EMC simulation // IOP Conference Series: Materials Science and Engineering.- 2019. – P. 1–7. doi: 10.1088/1757-899X/560/1/012110.