

Томский государственный университет систем управления и радиоэлектроники

РАДИОТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

РАДИОКОНСТРУКТОРСКИЙ

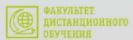
электронной техники

ТЭТАКУЯ. СТЕМ УПРАВЛЕНИЯ

ЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

ГУМАНИТАРНЫЙ ФАКУЛЬТЕТ

ФАКУЛЬТЕТ **БЕЗОПАСНОСТИ**


ФАКУЛЬТЕТ инновационных технологий

юридический ФАКУЛЬТЕТ

заочный и вечерний ФАКУЛЬТЕТ

ВЫБИРАЯ БУДУЩЕЕ, ВЫБИРАЙ ТУСУР!

634050, г. Томск, пр. Ленина, 40, каб. 129 E-mail: onir@main.tusur.ru Телефон/Факс: (3822) 900-100

Caur: http://tusur.ru/

Информационный центр абитуриента: magistrant.tusur.ru

Сборник избранных статей научной сессии ТУСУР

ПО МАТЕРИАЛАМ МЕЖДУНАРОДНОЙ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ СТУДЕНТОВ, АСПИРАНТОВ и молодых ученых «НАУЧНАЯ СЕССИЯ ТУСУР-2020»

г. Томск, 13-30 мая 2020 г. (в двух частях)

ЧАСТЬ 1

г. Томск

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Сборник избранных статей научной сессии ТУСУР

по материалам Международной научно-технической конференции студентов, аспирантов и молодых ученых «Научная сессия ТУСУР–2020»

13-30мая 2020 г., г. Томск

В двух частях

Часть 1

В-Спектр 2020

УДК 621.37/.39+681.518 (063) ББК 32.84я431+32.988я431 С 23

С 23 Сборник избранных статей научной сессии ТУСУР, Томск, 13–30 мая 2020 г.: в 2 частях. – Томск: В-Спектр, 2020. – Ч. 1. – 332 с. ISBN 978-5-91191-434-9 ISBN 978-5-91191-436-3 (Ч. 1) ISBN 978-5-91191-436-3 (Ч. 2)

Сборник избранных статей научной сессии ТУСУР включает избранные доклады по итогам Международной научно-технической конференции студентов, аспирантов и молодых ученых. Конференция посвящена различным аспектам разработки, исследования и практического применения радиотехнических, телевизионных и телекоммуникационных систем и устройств, сетей электро- и радиосвязи, вопросам проектирования и технологии радиоэлектронных средств, аудиовизуальной техники, бытовой радиоэлектронной аппаратуры, а также автоматизированых систем управления и проектирования. Рассматриваются проблемы электроники СВЧ- и акустооптоэлектроники, нанофотоники, физической, плазменной, квантовой, промышленной электроники, радиотехники, информационно-измерительных приборов и устройств, распределенных информационных технологий, вычислительного интеллекта, автоматизации технологических процессов, в частности, в системах управления и проектирования, информационной безопасности и защиты информации. Представлены статьи по математическому моделированию в технике, экономике и менеджменте, антикризисному управлению, правовым проблемам современной России, автоматизации управления в технике и образовании, а также работы, касающиеся социокультурных проблем современности, экологии, мониторинга окружающей среды и безопасности жизнедеятельности

> УДК 621.37/.39+681.518 (063) ББК 32.84я431+32.988я431

ISBN 978-5-91191-434-9 ISBN 978-5-91191-435-6 (**4.** 1)

Д.И. Дудник
ПЕРЕДАТОЧНЫЕ ФУНКЦИИ ПРОПУСКАЮЩИХ
МНОГОСЛОЙНЫХ НЕОДНОРОДНЫХ ГОЛОГРАФИЧЕСКИХ
ФОТОПОЛИМЕРНЫХ ДИФРАКЦИОННЫХ СТРУКТУР208
М.Н. Гаппарова, Д.К. Романенко, А.В. Щукин, А.С. Перин
ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ
ДИФРАКЦИОННОЙ РАСХОДИМОСТИ СВЕТОВОГО ПУЧКА
В КРИСТАЛЛЕ НИОБАТА ЛИТИЯ С УЧЕТОМ ВКЛАДА
ПИРОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА211
Т.Л. Григорян
ПОЛИНОМИАЛЬНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ
ДЛЯ МИНИМИЗАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ДАЛЬНОСТИ
ТРИАНГУЛЯЦИОННЫМИ ЛАЗЕРНЫМИ ДАЛЬНОМЕРАМИ215
К.В. Короткова, К.П. Мельник
ФОТОИНДУЦИРОВАННОЕ ПОГЛОЩЕНИЕ В КРИСТАЛЛАХ КТР218
Е.В. Бакаулова, К.Б. Кемелханова, К.М. Мамбетова
МОДЕЛИРОВАНИЕ ДИНАМИКИ ФОРМИРОВАНИЯ ПОЛЯ
ПРОСТРАНСТВЕННОГО ЗАРЯДА ФОТОРЕФРАКТИВНЫХ
ГОЛОГРАММ В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ
С ПОВЕРХНОСТНЫМ ЛЕГИРОВАНИЕМ
П.К. Сафронова
ИССЛЕДОВАНИЕ ФОРМИРОВАНИЯ МИКРОРАЗМЕРНЫХ
ФОТОННЫХ РЕШЕТОК БЕССЕЛЕПОДОБНЫМ
СВЕТОВЫМ ПУЧКОМ В КРИСТАЛЛЕ НИОБАТА ЛИТИЯ224
А.В. Михайленко, К.Г. Аксёнов
СПЕКТР ОПТИЧЕСКОГО ОТРАЖЕНИЯ СТРУКТУРЫ GaN/Al ₂ O ₃ 227
В.А. Горончко, М.М. Михайлов
ИЗУЧЕНИЕ ИК-СПЕКТРОВ ПОЛИПРОПИЛЕНА,
МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ZrO ₂ 229
М.М. Михайлов, О.А. Алексеева, А.Н. Лапин,
С.А. Юрьев, В.В. Каранский
СИНТЕЗ И ОПТИЧЕСКИЕ СВОЙСТВА ПОРОШКОВ ВаТі _(1-x) Zr _x O ₃
С ИСПОЛЬЗОВАНИЕМ НАНОЧАСТИЦ ТіО2232
В.В. Каранский
ВЛИЯНИЕ КВАНТОВ СОЛНЕЧНОГО СПЕКТРА
НА ОПТИЧЕСКИЕ СВОЙСТВА ПОРОШКА ZnO,
МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ SiO ₂ 235
TO TOPINING A
ПОДСЕКЦИЯ 2.6
ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ
Председатель – Заболоцкий А.М. , проф. каф. ТУ, д.т.н.;
зам. председателя – Куксенко С.П. , доцент каф. ТУ, к.т.н.
А.А. Дроздова
СОЗДАНИЕ ЭКВИВАЛЕНТА СЕТИ ПО MIL-STD-461 G
ДЛЯ СИЛОВОЙ ШИНЫ ЭЛЕКТРОПИТАНИЯ239
7

А.А. Дроздова	
АНАЛИЗ ВОСПРИИМЧИВОСТИ СИЛОВОЙ ШИНЫ	
ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА	
К ВОЗДЕЙСТВИЮ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА24	3
С.Х. Карри, Р.С. Суровцев	
АНАЛИЗ ВЛИЯНИЯ КОЛИЧЕСТВА ЯЧЕЕК ДИСКРЕТИЗАЦИИ	
МОДЕЛИ МЕАНДРОВОЙ ЛИНИИ НА РЕЗУЛЬТАТЫ	
ПОЛНОВОЛНОВОГО АНАЛИЗА24	7
Д.В. Клюкин, А.А. Квасников	
РАСЧЕТ ПОГОННЫХ ПАРАМЕТРОВ ЛИНИЙ ПЕРЕДАЧИ	
МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ	1
А.М. Лакоза, В.П. Костелецкий, Е.С. Жечев	
ИССЛЕДОВАНИЕ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ФИЛЬТРА	
С КОМБИНИРОВАННЫМ ДРОССЕЛЕМ	4
И.И. Николаев	
СИЛОВАЯ ШИНА ЭЛЕКТРОПИТАНИЯ	
С КОАКСИАЛЬНЫМ ПОПЕРЕЧНЫМ СЕЧЕНИЕМ	7
Р.С. Суровцев, А.В. Носов, Е.А. Сердюк	
ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ДЛЯ МАГИСТРАНТОВ	
ПО АНАЛИТИЧЕСКИМ МОДЕЛЯМ РАСПРОСТРАНЕНИЯ	
СВЕРХКОРОТКИХ ИМПУЛЬСОВ В МНОГОПРОВОДНЫХ	
ЛИНИЯХ ПЕРЕДАЧИ	0
А.Е. Максимов, И.А. Онищенко	
ИСПОЛЬЗОВАНИЕ АДАПТИВНОЙ ПЕРЕКРЕСТНОЙ	
АППРОКСИМАЦИИ ПРИ АНАЛИЗЕ ЛИНИЙ ПЕРЕДАЧИ26	3
А.А. Синельников, А.В. Чуб, Е.С. Жечев	
КВАЗИСТАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЧЕТЫРЕХСЛОЙНОГО	
ЗЕРКАЛЬНО-СИММЕТРИЧНОГО МОДАЛЬНОГО ФИЛЬТРА	
ПРИ ИЗМЕНЕНИИ ГРАНИЧНЫХ УСЛОВИЙ НА КОНЦАХ	
ПАССИВНЫХ ПРОВОДНИКОВ	6
И.А. Скорняков	
АНАЛИЗ ВЛИЯНИЯ ПАРАМЕТРОВ ВЛАГОЗАЩИТНОГО	
ПОКРЫТИЯ НА АМПЛИТУДУ ПЕРЕКРЕСТНЫХ НАВОДОК	_
В ПАРЕ СВЯЗАННЫХ ЛИНИЙ	9
Е.С. Варзин, А.В. Носов	
ОПТИМИЗАЦИЯ ЗАЩИТНОЙ МЕАНДРОВОЙ МИКРОПОЛОСКОВОЙ	
ЛИНИИ ЗАДЕРЖКИ С УЧЕТОМ РЕАЛЬНЫХ ГЕОМЕТРИЧЕСКИХ	_
ПАРАМЕТРОВ ПОПЕРЕЧНОГО СЕЧЕНИЯ27	3
ПОДСЕКЦИЯ 2.7	
СВЕТОДИОДЫ И СВЕТОТЕХНИЧЕСКИЕ УСТРОЙСТВА	
Председатель — Туев В.И., зав. каф. РЭТЭМ, д.т.н.;	
зам. председателя – Солдаткин В.С. , доцент. каф. РЭТЭМ, к.т.н.	
эам. преосеоителя — Солоиткип D.C. , ооцент. киф. 1 ЭТЭМ, К.Т.н.	
К.Н. Афонин	
РЕГРЕССИОННАЯ МОДЕЛЬ ПРЯМОГО НАПРЯЖЕНИЯ	
СВЕТОДИОДНОЙ НИТИ27	
32:	5

Научное издание

Сборник избранных статей научной сессии ТУСУР

По материалам Международной научно-технической конференции студентов, аспирантов и молодых ученых «Научная сессия ТУСУР–2020»

13-30 мая 2020 г., г. Томск

В двух частях

Часть 1

Корректор – В.Г. Лихачева Верстка В.М. Бочкаревой

Издательство «В-Спектр». Сдано на верстку 15.04.2020. Подписано к печати 15.05.2020. Формат $60\times84^1/_{16}$. Печать трафаретная. Печ. л. 20,75 Тираж 100 экз. Заказ 7.

Издано ТУСУР, г. Томск, пр. Ленина, 40, к. 205, т. 70-15-24 (для нужд всех структурных подразделений университета и авторов)

Издательство «В-Спектр». 634055, г. Томск, пр. Академический, 13-24, т. 8 905 089 92 40 E-mail: bvm@sibmail.com

ЛИТЕРАТУРА

- 1. Özgün Ö., Kuzuoğlu M. MATLAB-based Finite Element Programming in Electromagnetic Modeling. CRC Press, 2018. 428 p.
- 2. Клюкин Д.В. Программа триангуляции двухмерных структур произвольной сложности // Наука и практика: проектная деятельность от идеи до внедрения 2019: матер. VIII регион. науч.-практ. конф. Томск, 2019. Т. 2. С. 540—542.
- 3. Musa S.M., Sadiku M.N.O Computation of electrical parameters for different conducting bodies using finite element method // COMSOL [Электронный ресурс]. Научные статьи и публикации. URL: https://www.comsol.ru/ paper/computation-of-electrical-parameters-for-different-conducting-bodies-using-finit-5502 (дата обращения: 04.03.2020).
- 4. Musa S.M., Sadiku M.N.O. Using finite element method to calculate capacitance, inductance, characteristic impedance of open microstrip lines // Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 611–614, 2008.
- 5. Стручков С.М. Методика конформных отображений для моделирования полосковых линий передачи и проектирование устройств на их основе: дис. ... канд. тех. наук. Томск, ТУСУР, 2016. 148 с.
- 6. ELCUT программа моделирования [Электронный ресурс]. URL: https://elcut.ru/ (дата обращения: 04.03.2020).

УДК 621.396.669.8

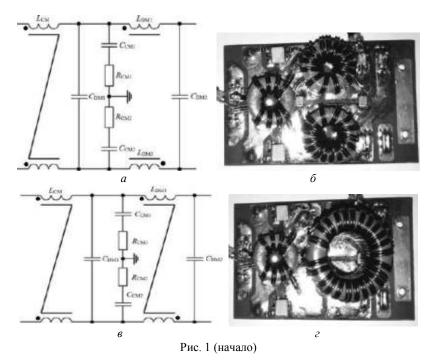
ИССЛЕДОВАНИЕ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ФИЛЬТРА С КОМБИНИРОВАННЫМ ДРОССЕЛЕМ

А.М. Лакоза, магистрант каф. ТУ;

В.П. Костелецкий, Е.С. Жечев, аспиранты каф. ТУНаучный руководитель А.М. Заболоцкий, проф. каф. ТУ, д.т.н., доцент г. Томск, ТУСУР, alexandrlakoza@mail.ru

Представлены частотные характеристики и конфигурации фильтров с разной компоновкой индуктивных элементов схемы. Выполнен сравнительный анализ.

Ключевые слова: гибридный дроссель, кондуктивные помехи, помехоподавляющий фильтр, балансные измерения.


Современная радиоэлектронная аппаратура восприимчива к электромагнитным помехам. Это связано с уменьшением расстояния между функциональными узлами и большим разнообразием модулей разного назначения, что ухудшает электромагнитную обстановку [1]. Одним из опасных факторов являются кондуктивные синфазные и дифференциальные помехи. Для их ослабления применяются помехоподавляющие фильтры на основе пассивных компонентов с сосредоточенными параметрами [2]. Синфазный и дифференциальные дроссели занимают большое пространство в схеме помехоподавляю-

щего фильтра. Предлагается использовать комбинированный дроссель, способный работать в синфазном и дифференциальном режимах. Это позволяет минимизировать количество индуктивных компонентов и размеры помехоподавляющего устройства [3].

Цель работы — выполнить сравнительный анализ помехоподавляющих фильтров с различными вариантами компоновок индуктивных элементов.

На рис. 1 представлены три варианта компоновки индуктивных компонентов: классический, промежуточный и комбинированный. Индуктивные компоненты при классической компоновке помехоподавляющего фильтра расположены независимо: два дифференциальных дросселя $L_{\rm DM1,\ DM2}$ установлены на выходе схемы, и синфазный дроссель $L_{\rm CM}$ установлен на входе схемы фильтра (рис. 1, a, δ) [4, 5].

Промежуточная компоновка отличается конструкцией дифференциального дросселя $L_{\rm DM1}$. Он выполнен на общем сердечнике двумя магнитосвязанными индуктивностями. Это позволяет незначительно уменьшить габариты и количество используемых компонентов (см. рис. $1, \mathfrak{s}, \mathfrak{e}$) [6].

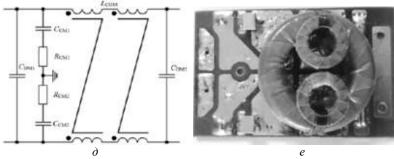


Рис. 1 (окончание). Принципиальные схемы и макеты помехоподавляющих фильтров с различной компоновкой индуктивных компонентов

В комбинированной компоновке все индуктивные компоненты заменены одной конструкцией, которая является синфазно-дифференциальным дросселем. Данная конструкция реализована на связанных индуктивностях L_{CDM} , что позволяет значительно уменьшить количество используемых компонентов (см. рис. $1, \partial, e$) [7]. Далее представлены результаты измерений, которые выполнены с помощью осциллографа Keysight EDUX1002G. На рис. 2 представлено сравнение частотных характеристик фильтров в синфазном (см. рис. 2, a) и дифференциальном (см. рис. $2, \delta$) режимах работы. Значения частот среза и крутизны спада представлены в таблице.

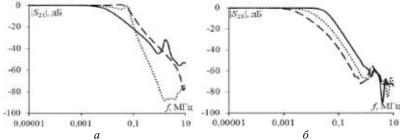


Рис. 2. Частотные зависимости $|S_{21}|$ для синфазного (a) и дифференциального (δ) режимов работы фильтров классической (····), промежуточной (- -) и комбинированной (——) компоновок индуктивных компонентов

Из представленных результатов видно, что в синфазном режиме работы наименьшей частотой среза обладает фильтр с комбинированной компоновкой, а в дифференциальном режиме работы наименьшая частота среза у фильтра с промежуточной компоновкой. Необходимо отметить, что при замене индуктивных элементов принципиальная схема фильтра не менялась.

Значения частот среза и крутизны спада

1 10						
	Синфазный режим		Дифференциальный режим			
Компоновка	Частота	Крутизна	Частота	Крутизна		
	среза, кГц	спада, дБ/дек	среза, кГц	спада, дБ/дек		
Классическая	63,48	60	7,43	40		
Промежуточная	55,24	40	2,14	40		
Комбинированная	8,02	20	34,31	40		

ЛИТЕРАТУРА

- 1. Mora N., Vega F., Lugrin G., Rachidi F., Rubinstein M. Study and classification of potential IEMI sources # System and assessment notes. Note 41. 8 July 2014.
- 2. Palego C. A Two-Pole Lumped-Element Programmable Filter with MEMS Pseudodigital Capacitor Banks / C. Palego, A. Pothier, A. Crunteanu, M. Chatras, P. Blondy, C. Champeaux, P. Tristant, A. Catherinot // IEEE Trans. on microwave theory tech. 2008. Vol. MTT-56, iss. 3. P. 729–735.
- 3. Baskakova A.E., Turgaliev V.M., Kholodnyak D.V. A Tunable Lumped-Element Bandpass Filter with Independent Continuous Tuning of Center Frequency and Bandwidth. Journal of the Russian Universities. Radioelectronics. 2016. Vol. 3. P. 25–32.
- 4. Zhechev Y.S. Electromagnetic interference filter for spacecraft power bus / Y.S. Zhechev, V.P. Kosteletskii, A.M. Zabolotsky, T.R. Gazizov // Journal of Physics: Conference Series (JPCS). 2019. P. 2.
 - 5. Berman, M. All about EMI filters. San Diego, USA, 2008. 3 p.
- 6. Richard L.O. EMI filter design / L.O. Richard, M.P. Timothy // CRC Press. $-\,2012.-344$ p.
- 7. Nan L. A common mode and differential mode integrated EMI filter / L. Nan, Y. Yugang // 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference. Shanghai, China, 2006. 5 p.

УДК 621.391.31

СИЛОВАЯ ШИНА ЭЛЕКТРОПИТАНИЯ С КОАКСИАЛЬНЫМ ПОПЕРЕЧНЫМ СЕЧЕНИЕМ

И.И. Николаев, магистрант каф. ТУ

Научный руководитель М.Е. Комнатнов, доцент каф. ТУ, к.т.н. г. Томск, ТУСУР, nikolaev.727@yandex.ru

Выполнено вычисление погонных индуктивности и ёмкости для силовой шины электропитания с коаксиальным поперечным сечением при различном количестве и толщине стенок цилиндров. Ключевые слова: силовая шина электропитания, погонные параметры, численное моделирование.