УДК 621.372

Синтез связанных микрополосковых линий передачи с помощью машинного обучения

Н.С. Павлов

Научный руководитель: к.т.н. Е.С. Жечев Томский государственный университет систем управления и радиоэлектроники, Россия, г. Томск, пр. Ленина, 40, 634050 E-mail: pavlov.n@tu.tusur.ru

Synthesis of coupled microstrip transmission lines using machine learning

N.S. Pavlov

Scientific Supervisor: Ph.D. Y.S. Zhechev
Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk,
Lenin str., 40, 634050
E-mail: pavlov.n@tu.tusur.ru

Abstract. This paper presents the method for synthesizing of geometric parameters of a coupled microstrip transmission line using machine learning. Sets of design parameters were used as input parameters. The synthesis model is a neural network with four hidden layers. The model predicts accurate values of geometric parameters with an average error of about 1 %.

Key words: coupled microstrip line, synthesis, machine learning, neural networks.

Ввеление

Микрополосковые линии передачи (МПЛ) необходимы для обеспечения работоспособности современных радиоэлектронных устройств (РЭУ). Данные линии используются для обеспечения эффективного распространения сигнала, согласования импеданса и защиты от электромагнитных помех [1]. Для точного проектирования МПЛ необходимо использовать синтез ее параметров [2]. При этом модели машинного обучения (МО) являются одним из наиболее востребованных и актуальных инструментов использующихся при синтезировании подобных структур. Цель работы – выполнить синтез МПЛ с помощью МО.

Материалы и методы исследования

Для синтеза параметров МПЛ использовалась методика из [3], которая заключается в использовании МО и базисных наборов проектных параметров [4]. Для данной работы в качестве входных параметров использовались значения собственного Z_{11} и взаимного Z_{12} волнового сопротивления и значения четной $\tau_{\it effe}$ и нечётной $\tau_{\it effo}$ эффективной погонной задержки. На выходе синтезировались геометрические параметры МПЛ: ширина проводника w, толщина подложки h, расстояние между проводниками s и толщина проводников t. На рис. 1 представлены поперечное сечение МПЛ и ее эквивалентная схема включения.

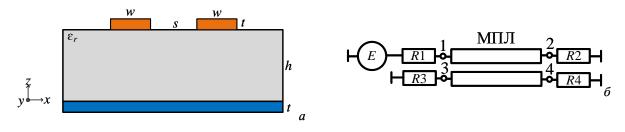


Рис. 1. Поперечное сечение МПЛ (а) и эквивалентная схема включения (б)

Используемая модель нейронной сети имееть последовательно полно-связанную структуру. Модель состоит из входного слоя, четырех скрытых слоев и выходного слоя. Входные и выходные слои имеют по 4 нейрона (сигнала), первый скрытый слой имеет 256 нейронов, второй — 128, третий — 64, четвёртый слой — 32. Для программной реализации модели синтеза связанных МПЛ использована среда разработки Jupyter Notebook открытого пакета Anaconda. В качестве языка программирования использовали высокоуровневый язык программирования общего назначения с динамической строгой типизацией и автоматическим управлением памятью Руthon. Для построения и обучения модели синтеза использовали фреймворк Keras.

На первых двух слоях в качестве функции активации использована функция ReLU (Rectified Linear Unit), на двух последних — ELU (Exponential Linear Unit). В качестве оптимизатора использован adam (adaptive moment estimation) или адаптивная оценка момента с скоростью обучения 0,0005. В качестве функции потерь использована функция mse (mean squared error), которая представляет собой среднюю квадратичную ошибку. На рис. 2 представлена архитектура нейронной сети.

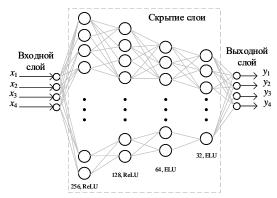
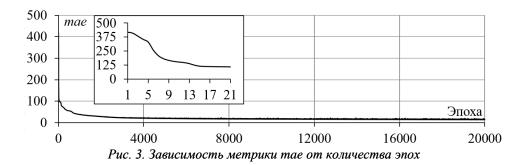



Рис. 2. Архитектура нейронной сети

Перед обучением модели проведена нормализация данных. Данный процесс необходим для того, чтобы преобразовать данные к неким безразмерным величинам. Обучение проводилось с помощью центрального процессора AMD Ryzen 9 7900X, количество эпох составило 20000, а время обучения 14 мин. и 11 сек. На рис. 3 представлена зависимость метрики средней абсолютной ошибки *тае* от количества эпох.

Из рис. 1 видно, что значение ошибки плавно уменьшается, значение на первой эпохе составляло 418, на последней -3, что в средней означает, что предсказанные моделью геометрические параметры будут отличаться от истинных на 3 мкм.

Результаты

Для того, чтобы проверить достоверность результатов синтеза с помощью МО проведен анализ на основе тестовых данных из общей базы данных, которые не использовались

при обучении модели. Также для сравнения рассчитано среднее отклонение предсказанных и истинных значений с помощью выражения:

$$\Delta_{cp} = \frac{x - x_{npe\partial}}{x_{cp}} \cdot 100\%,$$

где x_{cp} — среднее значение двух геометрических параметров;

x – истинное значение геометрического параметра;

 x_{nped} — предсказанное значение геометрического параметра.

Таблица 1 Сравнение истинных и предсказанных геометрических параметров связанной МПЛ

Геометрические параметры связанной МПЛ, мкм								Отклонение, %
w	W_{nped}	h	$h_{npe\partial}$	S	S_{nped}	t	t_{nped}	Отклонение, %
360	357,6	100	100,4	390	386,4	70	71,3	0,99
420	419,6	1000	998,4	140	139,3	35	35.9	0,84
160	161,2	2000	2000,3	240	238,9	35	36,3	1,23
500	498,3	500	499,8	125	125,1	35	35,7	0,59
310	308.6	1500	1498,9	420	419,3	105	105,8	0,38
120	117,9	1000	999,1	190	188,5	105	106,9	1,12
370	369,7	100	100,9	410	407,9	35	35,7	0,94
460	457,3	2000	1999,1	230	229,2	18	18,3	0,68
240	241,5	500	499,7	280	276,7	105	105,9	0,78
270	268,5	1500	1499,5	280	278,3	105	106,3	0,62

Из таблицы 1 видно, что в среднем, отклонение изменяется в диапазоне около 1 %. Максимальное отклонение составляет 1,23 %, минимальное – 0,38 %. Из результатов анализа можно сделать вывод, что предсказанные значения геометрических параметров связанной МПЛ близки к истинным, отклонения величин имеют малые значения.

Заключение

В результате проведенного исследования реализована модель синтеза геометрических параметров связанной МПЛ с помощью МО. В процессе обучения удалось достичь уменьшение средней квадратичной ошибки с 418 до 3. Анализ достоверности результатов синтеза осуществлялся на основе тестовых данных. Среднее отклонение геометрических параметров составило около 1%, максимальное -1,23%, а минимальное -0,38%.

Исследование выполнено в рамках проекта FEWM-2024-0005 Минобрнауки России.

Список литературы

- Семенищев А. П., Мамыкин А.Д., Шадт А.К., Лунегов И.В. Моделирование микрополосковых линий в СВЧ-диапазоне // Вестник Пермского университета. Серия: Физика. 2012. – № 1. – С. 91–93.
- Горбачев А.П. Синтез микроволновых устройств на связанных линиях передачи. Новосибирск: Новосибирский государственный технический университет, 2010. – 123 с.
- Павлов Н.С., Сурков В.А., Жечев Е.С. Методика синтеза связанных микрополосковых линий передач без потерь с использованием технологий искусственного интеллекта // Электронные средства и системы управления: материалы докладов XIX Международной научно-практической конференции (15–17 ноября 2023 г.): в 2 ч. – Томск : В-Спектр, 2023. – № 2. – С. 41–44.
- Сычев А.Н., Стручков С.М. Системы параметров одинаковых связанных линий с неуравновешенной электромагнитной связью // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2014. – № 1 (31). – С. 26–30.