
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Analyzing the wire scatterer using the method of 

moments with the step basis functions 

 

Tuan Phuong Dang 

Department of Television and Control 

Tomsk State University of Control 

Systems and Radioelectronics 

Tomsk, Russia 

dang.p.2213-2023@e.tusur.ru 

  

Adnan F. Alhaj Hasan 

Department of Television and Control 

Tomsk State University of Control 

Systems and Radioelectronics 

Tomsk, Russia 

alkhadzh@tusur.ru 

  

Talgat R. Gazizov 

Department of Television and Control 

Tomsk State University of Control 

Systems and Radioelectronics 

Tomsk, Russia 

talgat.r.gazizov@tusur.ru

Abstract—This paper presents the development of an 

algorithmic mathematical model that uses the method of 

moments with step basis functions, an explanation of its 

mathematical formulation, and the development of a computer 

code based on it for modeling straight scatterer wires. The 

following scattering characteristics are considered: current 

distribution (magnitude and phase), radar cross section and 

back scattering cross section. These results were compared with 

those published in other papers and obtained numerically with 

triangular and sinusoidal basis functions, analytically and 

experimentally. A good agreement between the compared 

results is shown and the possibility of using the developed code 

to analyze wire scatterer structures is demonstrated. 
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I. INTRODUCTION  

The development of new scattering structures has been of 
interest for a long time [1–4]. Currently, special attention is 
also paid to the study of wire scatterers and scattering 
structures based on them. Such studies have mainly consisted 
of the theoretical and experimental investigation of the radar 
cross section (RCS) and the back scattering cross section [5–
7]. The earlier and current investigations were caried out using 
different numerical methods, but one of the most used method 
for modelling wire scatterers is the method of moments 
(MoM) [8, 9]. Researchers with the help of MoM investigated 
wire scatterers regarding to: arbitrary excitation and loading 
[10], arbitrary shape [11, 12], bent wires with junctions [13], 
developing new modelling algorithms [14, 15] and computer 
programs based on them [16, 17], frequency and time domains 
[18, 19]. 

In general, researchers used MoM with different basis 
functions such as triangular [13, 16] or sinusoidal [20] ones. 
But when dealing with these types of basis functions, there are 
difficulties in constructing their vertices at the node ends of 
the wire segments (one need to choose an appropriate number 
of segments to satisfy the conditions of segments and basis 
functions numbers), as well as at the intersection (junction) of 
wires [13, 16, 21]. 

On the other hand, the use of MoM with step basis 
functions seems to be easier in implementation and in 
segmentation of the wire structure (especially wires with 
junctions). Although these functions have disadvantages 
related to the convergence of the results, which may also 
require large computational resources, they have a remarkable 
advantage related to the formation of the MoM impedance 
matrix of the resulting system of linear equations. Eliminating 

one segment from the wire structure results in the elimination 
of only the matrix column and row corresponding to that 
segment. In other words, the existence of each individual 
segment is independent of the others (unlike the case with 
basis functions such as those constructed using points along 
the wire, like the triangular ones). This may allow us to utilize 
this advantage in the design of sparse wire grid scatterer 
structures [22]. Therefore, it is reasonably to use MoM with 
step basis functions to analyze scattering wire structures and 
more particularly those with complex shapes. Moreover, it is 
necessary to develop new mathematical models and program 
codes on their base to model such scattering wire structures. 

In the classical work of Harrington [8], a general 
formulation for analyzing arbitrary wires using MoM was 
provided. However, to the best of our knowledge, the 
explanation and the realization of this formulation has not 
been made earlier based on using MoM with step basis 
functions and Dirac delta functions as testing ones. Moreover, 
among the well-known free and commercial computer codes, 
the step basis functions have not been used before for 
analyzing wire scatterers. 

The aim of this paper is to develop an algorithmic 
mathematical model that uses MoM with step basis functions 
and a program code on its base to model straight scatterer 
wires. The results obtained in this study using Matlab code 
with the step basis functions were compared with those 
obtained numerically with triangular [10] and sinusoidal [20] 
basis functions, analytically [23] and experimentally [24]. 

This paper is organized as follows: Section II provides a 
comprehensive explanation of the formulas used in forming 
an algorithmic mathematical model for calculating and 
analyzing straight wire scatterers excited by plane waves. In 
addition, for solving such problem a simple formulation for 
setting the incident plane wave and forming appropriate 
excitation matrix was proposed. Section III presents the 
algorithmic mathematical model in a simple sequence of steps 
that enable designing a program on its base to calculate the 
components of the scattered field produced by the currents 
along straight wire. In Section IV, the results of modeling a 
straight scatterer wire using the developed Matlab code were 
compared with those published. Finally, Section V 
summarizes the research results and conclusions. 

II. HISTORY: FORMULATION EXPLANATION 

To explain the general formulation for analyzing arbitrary 
wires using MoM from [8], the same example of a scatterer 
wire with the length of L and radius of a (where L>>a) (Fig. 1) 
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is considered. The analysis consists of the following. At first 
the wire should be divided into N segments. 
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Fig. 1. The straight wire structure 

One should note that N depends on the wavelength λ of the 
operating frequency (antenna problem) or the incident wave 

(scattering problem). In most cases, the segment length  (li 
where i=1, …, N) should be less than λ/10, and in the case of 

complicate structures li<λ/20 but not less than λ/10000. It is 

reasonable that increasing N (or decreasing li) will increase 

the calculations accuracy, but this is valid as the li/a ratio is 
bigger than 5. Moreover, increasing N will increase the 
number of operations, which leads to an increase in the 
required computational costs to solve the problem. 

The step function (Fig. 2) has constant value in the 
segment and equal to zero outside it. The considered domain 
may be divided into N segments (pulses) with N+1 points 
Then, the step function is defined as: 
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Fig. 2. The step basis functions. 

When analyzing the scattering problem, the wire is excited 
by an external incident electric field Einc(i) where i=1, …, N is 
the segment index. According to [8] the voltage excitation 
matrix [Vinc] can be calculated as 
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When using MoM with step basis function, li value in (2) 
will be equal to the length of i-th segment. Then the unit plane 
wave will have the form [8] 

ijk rinc

incE u e
−

=  (3) 

where k is the wave number vector pointing in the travel 

direction of the wave, 𝑟𝑖⃗⃗  is the radius vector from the origin 

of the Cartesian coordinate system to the center of the i-th 

segment, uinc is a unit vector specifying the polarization of the 

wave.  

In [8], the formulation of the incident plane wave 

assignment and excitation matrix formation was not 

presented or explained directly for these types of basis 

functions. However, in this work the following simple 

representation is derived and used for the considered 

problem. 

The unit plane wave in spherical coordinate for each 

element in the voltage excitation matrix can be written as 

( ) ( ) iinc inc inc jk r
seg segE i n E n E e
 

 

−= +  (4) 

where 𝐸𝜃
𝑖𝑛𝑐  and 𝐸𝜑

𝑖𝑛𝑐  are the components of the incident 

electromagnetic wave according to the azimuthal θinc and 
elevation φinc angles that determine the direction of the wave. 

As is known, when converting from the Cartesian to the 
spherical coordinate system, one should use the local 
orthogonal unit vectors in the directions of increment r, θ, and 
φ that given by: 

sin cos sin sin cos ,r x y z    = + +  (5) 

cos cos cos sin sin ,x y z     = + −  (6) 

sin cosx y  = − +  (7) 

where φ, θ are the azimuthal and elevation angles in the 
spherical coordinate system, and x̂, ŷ, ẑ are the unit vectors in 
the Cartesian coordinate system. Then, the unit vectors of the 

considered segment: 𝑛⃗ 𝑠𝑒𝑔
𝜃  and 𝑛⃗ 𝑠𝑒𝑔

𝜑
 by θinc and φinc in the 

spherical coordinate system, can be written as: 

cos cos cos sin sin ,inc inc inc inc inc
seg segX segY segZn n n n


    = + −  (8) 

sin cosinc inc
seg segX segYn n n


 = − +  (9) 

where 𝑛⃗ seg(X, Y, Z) are the unit vector projections in the Cartesian 
coordinate system and have the following form: 

/ ,segX Xn l l=    

/ ,segY Yn l l=    

/segZ Zn l l=    

(10) 

where lX, lY, lZ are the vector projection of the vector 𝑙⃗⃗  ⃗ 
(which has the direction from the segment start to end points) 
on the Cartesian coordinate system axis. 

The phase of the excitation incident wave can be 
represented as: 

( sin cos sin sin cos )center inc inc center inc inc center inc
i seg seg segkr k x y z    = + +  (11) 

where (𝑥, 𝑦, 𝑧)𝑠𝑒𝑔
𝑐𝑒𝑛𝑡𝑒𝑟 are the center coordinates of the 

considered segment. 

According to [8], the impedance matrix [Z] elements can 
be obtained by calculating the impedances (Zmn) between each 
two segments (m and n) which requires the evaluation of the 
following scalar function (More details can be found in [8]): 
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where  ln is the length of the n-th segment, Rmn is the distance 
between two points on the considered segments (Fig. 3), and 
it is given by: 
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where the value of z is determined as the projection of the 
vector 𝑧  between two points on each n and m segments on the 
vector of the n (or m) segment, through their scalar product 

.
.

z n
z

n
=  (14) 

The value  is obtained by 

2 2 ,r z = −  (15) 

when <a, then =a. The distance r between two points on 

each n and m segments, which is equal to z , is calculated by 

2 2 2( ) ( ) ( )m n m n m nr x x y y z z= − + − + −  (16) 

where (x, y, z)mn are the coordinates of the points on each m 
and n segments, respectively. 
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Fig. 3. The geometry for calculating ψmn 

Then the impedance matrix element can be calculated as 
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where μ and ε are the medium absolute permeability and 
permittivity, while the symbols + and – are used over the 
segments m and n when appropriate to determine their start 

and end points. The product lnlm can be obtained by: 

x x y y z z

n m m n m n m nl l l l l l l l  =   +   +    (18) 

where 𝑙𝑛,𝑚
(𝑥,𝑦,𝑧)

 are the vector projection of the vectors ∆𝑙⃗⃗  ⃗
𝑛 and 

∆𝑙⃗⃗  ⃗
𝑚 (that have the direction from the start to end points of the 

n, m segments, respectively) on the Cartesian coordinate 
system axis. 

After fillings the impedance [Z] and the voltage [V] 
matrices one can find the elements of the current matrix [I] by 
solving the formed system of linear algebraic equations 
[Z][I]=[Vinc] using the multiplication of the matrix 
inverse [Z–1] by [Vinc] as 

1[ ] [ ][ ].incI Z V−=  (19) 

As the current matrix elements are obtained, one can 
determine the electrical field intensity of the scattered field in 

the far zone by treating the wire as an array of N current 

elements Iili as 
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To calculate (20), one may treat it as two independent and 
sequential parts: the phase and the amplitude (without the 

coefficient part). First, one should find the phase part  as 

cosi i i Iikr  = +  (21) 

where Ii is the current phase of the i-th segment, i is the angle 
between the vector 𝑟 i and the vector 𝑟  – vector from the origin 
of the coordinate system to the point where the electrical field 
intensity is being calculated, and the unknown in (21) can be 
calculated using the scalar product of 𝑟  and 𝑟 i as 

.
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Then, one may calculate the amplitude part as 

( , , ) ( , , )i x y z i i x y zA I l=   (23) 

where li(x, y, z) are the vector projections of the vector 𝑙⃗⃗  ⃗
𝑖 on 

the Cartesian coordinate system axis. 

Then the far field component along the axis of the Cartesian 
coordinate system from (20) can be written as 
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Then, the field components in the spherical coordinate system 
can be obtained as: 

cos cos cos sin sin ,s s s s

x y zE E E E     = + −  (25) 

sin cos .s s s
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Finally, the total field in the far zone is given by 
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The bistatic RCS (σ) might be calculated as 
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where 𝜂 = √𝜇/𝜀  is the impedance of free space. The σ 

components (in the spherical coordinate system) and their 

total can be obtained as 

cos cos cos sin sin ,x y z        = + −  (29) 

sin cos ,x y    = − +  (30) 

22
.total    = +  (31) 

III. ALGORITHM DEVELOPMENT 

Based on the provided, modernized and explained 

mathematical model, an algorithm for analyzing wire scatterer 

using MoM with step basis functions and calculating its 

bistatic RCS is developed and presented further. 

1. Creation of the scatterer geometric model 

1.1. Set the parameters of the scatterer wire: its radius and its 

start and end points coordinates. 



1.2. Set the number of segments on which the wire will be 

divided. 

1.3. Determine the start, end and center points coordinates of 

each segment along the wire. 

1.4. Calculate the length of each segment li. 
2. Calculation of the voltage excitation matrix 

2.1. Set the parameters of the incident plane wave: frequency; 

amplitudes of the 𝐸𝜃
𝑖𝑛𝑐 and 𝐸𝜑

𝑖𝑛𝑐 components; the angles 

inc and inc that define the wave direction. 

2.2. Calculate the wavenumber and then the unit plane wave 

Einc(i) in spherical coordinate for each element in the 

voltage excitation matrix using the following formulas in 

sequence: (10), (8), (9), (11), and then (4). 

2.3. Fill the voltage excitation matrix [Vinc] as in (2) with the 

obtained results from 1.4 and 2.2. 

3. Calculation of impedance matrix 

3.1. Set the values of the medium μ and ε. 

3.2. Calculate the vector 𝑧  between two points on each two 

segments and its projections z on the each considered 

segment by (14). 

3.3. Calculate the distance r between two points on each two 

segments by (16). 

3.4. Calculate   by (15) using the obtained results from 3.2 

and 3.3. 

3.5. Calculate the value of α as half-length of each segment. 

3.6. Calculate the scalar functions ψ++, ψ+–, ψ–+, ψ– –, ψ of 

each two segments as in [8, 25] using the obtained results 

from 3.2–3.5. 

3.7. Calculate the scalar product of the ∆𝑙⃗⃗  ⃗
𝑛 and ∆𝑙⃗⃗  ⃗

𝑚 vectors 

of each two n and m segments using (18). 

3.8. Calculate the impedance matrix elements by (17) using 

the result from 3.6 and 3.7. 

4. Calculation of the current matrix 

4.1. Find the elements of the current matrix [I] through the 

matrix multiplication of [Z–1] by [Vinc] (19). 

5. Calculation of the scattered field in the far–zone 

5.1. Set the spherical coordinate components (azimuthal  

and elevation θ angles and r) required to determine the 

points in the far field where the field intensity will be 

calculated. 

5.2. Calculate the phase part i using (22) and then (21), and 

the amplitude part Ai(x,y,z) using (23). 

5.3. Calculate the coefficient 
𝜇𝜔𝑒−𝑗𝑘𝑟

𝑗4𝜋𝑟
 in (20). 

5.4. Calculate the scattered field components in the Cartesian 

coordinate system using (24). 

5.5. Convert the scattered field components from the 

Cartesian to the spherical coordinate system using (25)–

(27). 

5.6. Calculate 𝜂  and the bistatic RCS components in the 

Cartesian coordinate system using (28). 

5.7. Convert the bistatic RCS components from the Cartesian 

to the spherical coordinate system (29)–(31). 

IV. NUMERICAL RESULTS 

Based on the developed algorithm in the previous section, 
a Matlab code was written to analyze straight scatterer wires. 
In order to verify the results of the developed program, its 
results were compared with the published ones of other 
researchers obtained for the same problem: numerically using 
triangular functions [10], numerically using sinusoidal 

functions [20], analytically [23] and experimentally [24]. The 
incident wave in all considered cases is a plane wave and has 
an amplitude of 1 V/m while the angle of incidence is different 
for each case. 

First, we compared our results with those obtained in [10] 
using MoM with triangular functions and 32 segments. The 
authors of [10] considered two cases of scatterer wire: L=1.5λ 
and 2λ where L/2a=74.2. The incident plane wave is 

considered at different angles inc=15, 30, 45, 60, 75, 90. 
Here, we modeled the two cases with different segment 
numbers of 32, 64, and 90. The dependences of the current 

magnitude |I| and phase I on the coordinates along the wire 
for the two cases obtained in [10] and using Matlab are 
presented in Fig. 4, 5.  

 
(a) 

 
(b) 

Fig. 4. The dependences of |I| (a) and I (b) on coordinates along the L=1.5λ 

wire with inc=90: [10] (⎯), Matlab using 32 (––), 64 () and 90 (⎯) step 

basis functions. 

 

(a) 

 

(b) 

Fig. 5. The dependences of |I| (a) and I (b) on coordinates along the L=2λ 

wire with inc=90: [10] (⎯), Matlab using 32 (––), 64 () and 90 (⎯) step 

basis functions. 
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The maximum |I| are calculated in Matlab using 
90 segments and compared to those from [10] also for the two 

wire cases at different inc and summarized in Table I. 

TABLE I.  THE MAXIMUM |I| IN MA FOR THE TWO WIRE CASES 
AT DIFFERENT inc 

L, m Model 
inc,  

15 30 45 60 75 90 

1.5λ 

Matlab 6.25 6.2 5.279 2.84 1.74 2.7 

[10] 6.95 6.78 5.68 2.99 1.85 2.9 

|Imax|, % 10.7 8.5 7.06 5.01 5.94 6.89 

 % 2.1 2.2 0.5 1.1 2.02 1.05 

2λ 

Matlab 8.07 7.5 4.94 2.223 2.866 1.78 

[10] 8.92 8.08 5.27 2.407 3.11 1.71 

|Imax|, % 9.5 6.8 6.3 7.6 7.8 3.9 

 % 1.5 1.56 2.47 1.7 0.81 3.03 

Upon analyzing the results in Figs. 4 and 5 and Table I, 
one can notice that when using MoM with step basis functions, 
the maximum deviation of |Imax| obtained in Matlab compared 
to those from [10] is about 11 %. The maximum deviation of 

I in the segments corresponding to the considered |Imax| is 
about 3 %. 

Fig. 6 and 7 show the calculated RCS for the two wire 

cases at inc of 45, 60, and 90 obtained in Matlab and from 
[10]. The obtained data show that the compared RCS are in 
good agreement with maximum deviation of 9% (Fig. 6a). 
One may notice that the angle of the main lobe of the 
scattering field is symmetric to the direction of the incident 
wave through the perpendicular plane to the plane that 
contains the wire, which is consistent with the mirror 
diffraction theory. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  The RCS of the L=1.5λ wire scatterer at inc of 45 (a), 60 (b) and 

90 (c) obtianed in [10] (– –) and in Matlab with 60 step basis functions (⎯) 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The RCS of the L=2λ wire scatterer at inc of 45 (a), 60 (b) and 90 

(c) obtianed in [10] (– –) and in Matlab with 60 step basis functions (⎯). 
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Next, we considered the scatterer wire from [20], which 
modeled using basis sinusoidal function with 31 segments and 
with the following parameters: L=1.5λ, 2πa=0.0635λ, 

θinc=30. The dependences of |I| and I on coordinates along 
the wire and its RCS obtained in [20] and using Matlab are 
presented in Fig. 8 and 9. The results analysis shows that the 
compared |I| values differ maximally by about 11%, and their 

I differ by about 1%. The RCS values at the main lobe differ 
by about 11%. 

 
(a) 

 
(b) 

Fig. 8. The dependences of |I| (a) and I (b) on coordinates along the wire 

obtained in: [20] (–), Matlab with 31 (––), 61 (), 91 (–) step basis functions. 

 

Fig. 9. The RCS of the scatterer wire obtained in: [20] (⎯), 

Matlab with 31 (––), 61 (), 91 (⎯) step basis functions. 

Then we considered the scatterer wire from [23] in two 
cases: L/λ=0.75, L/a=150 and L/λ=4.065, L/a=2856. The RCS 
for the two cases obtained analytically in [22] and using MoM 
with 64 step basis functions are compared in Fig. 10. The 
compared results were in good agreement. Plots of the long 
wires are bigger in magnitudes and have several minimums 
and maximums than those for short ones. In general, the RCS 
is larger as the wire length increases. 

 
(a) 

 
(b) 

Fig. 10. The RCS for wire cases: L/λ=0.75 (a) and L/λ=4.065 (b), 

obtained at inc=90(red), 70(blue), 50(black), 30(green), 10(yellow), 

and using MoM with 64 segments (solid) and analytically in [23] (dashes). 

Finally, we considered the scatterer wire form [24] where 

the dependences of the back scattering cross section on the L/ 
ratio when varying the wire length from 0.1λ to 5.4λ (with 
a/λ=0.00627) were obtained experimentally. As well known, 
when the incident wave is perpendicular to the surface where 
the scatterer wire is located, the main lobe of the RCS will be 
in the opposite direction. Therefore, we will consider this case 
when calculating the backscattering cross section using MoM. 
The length of the segment is taken to be 5 times the wire 
radius. Fig. 11 compares the results obtained in [24] and using 
Matlab. The comparison shows that in general the compared 
results are in good agreement especially when the wire length 
is less than 4.5λ (with maximum deviation is about 8%). 
However, when the wire length is larger 4.5λ, the deviation 
increases up to 20%. Moreover, it can be noticed that in cases 
where the wire length is equal to an odd number of λ/2, the 
largest back scattering is obtained compared, which is 
completely consistent with the scattering theory. 

 

Fig. 11. The dependences of the back scattering cross section of the scatterer 

wire form [24] on the L/ ratio: measured (– –) and calculated (⎯) 

V. CONCLUSION 

This paper provides a comprehensive comparative 
analysis of the scattering characteristics from straight wires. 
The main contributions include developing an algorithmic 
mathematical model that uses MoM with step basis functions 
and explaining its mathematical formulation so the 
researchers can easily develop a computer code on its base for 
modeling straight scatterer wires. A Matlab code was 
developed and used to model different scatterers from 
different works. The calculated using Matlab results were 
obtained and compared with those obtained numerically with 
triangular and sinusoidal basis functions, analytically and 
experimentally. The comparison showed a good agreement in 
the scattered electromagnetic field calculations which verifies 
our results. In addition, this demonstrates the possibility of 
using MoM with step basis function to analyze and simulate 
wire scatterer structures. In the future, the developed model 
and code can be used to analyze more complex wire structures 
and especially the sparse ones. 
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