PAPER • OPEN ACCESS

Evaluating the influence of the magnetic permeability of the microstrip modal filter substrate on its frequency characteristics

To cite this article: E B Chernikova et al 2020 J. Phys.: Conf. Ser. 1611 012032

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

This content was downloaded from IP address 212.192.121.136 on 10/09/2020 at 05:14

Evaluating the influence of the magnetic permeability of the microstrip modal filter substrate on its frequency characteristics

E B Chernikova, A A Kvasnikov, A M Zabolotsky and S P Kuksenko

Tomsk State University of Control Systems and Radioelectronics, 40, Lenina Ave., Tomsk, 634050, Russia

E-mail: chiernikova96@mail.ru

Abstract. This paper considers the possibility of improving the characteristics of modal filters by using composite materials with a relative magnetic permeability of $\mu_r > 1$. The influence of the magnetic permeability of the microstrip modal filter substrate on its frequency characteristics is investigated. The paper presents the frequency dependences $|S_{21}|$ of the filter with lengths l=1, 0.5, and 0.2 m and with $\mu_r=1$, 4, 7, and 10. It is shown that the increase of the the μ_r value leads to a decrease in the filter bandwidth.

1. Introduction

The nomenclature of radioelectronic devices (RED) used in radar systems, television, and radio is increasing every year. At the same time, because of the vulnerability of these devices to electromagnetic interference, the requirements for ensuring their electromagnetic compatibility (EMC) are being constantly tightened [1]. The interference that penetrates RED directly through the conductors, for example, through signal conductors or power circuits, is called conducted [2]. One of the types of conductive interference is ultrashort pulses (USP) [3]. They are particularly dangerous because of their short duration and wide spectrum [4, 5]. In addition, when a USP affects the equipment, the energy does not have time to be distributed across the structure elements, and therefore, due to the localization of the energy in one area, the probability of failure in sensitive areas increases [6].

To protect RED from the effects of USPs, it is proposed to use modal filters (MF), whose operation is based on the modal decomposition of the interference pulse into pulses of lower amplitude caused by the difference in mode delays. The simplest MF structure is a segment of connected transmission lines (TL) with the number of conductors N=2, where the USP is decomposed into 2 pulses of lower amplitude [7]. A complete decomposition of the pulse in a segment of length *l* takes place if the total pulse duration t_{Σ} is less than the minimum modulus of the delay difference in the propagation of modes in the line [8], i.e. if the condition is met

$$t_{\Sigma} < l \cdot \min |\tau_{even} - \tau_{odd}|, \quad i, k = 1, \dots, N, \quad i \neq k,$$

where τ_{even} and τ_{odd} – are the even and odd modes in the transmission line, respectively.

There are several ways to improve the efficiency of modal decomposition. First, a cascade connection can be used, which results in the sequential decomposition of each pulse into two more pulses of a lower amplitude [9]. There are also several modal filters under the development that differ in location of conductors and their number. A study of a multi-conductor MF has been performed, where it was shown

that an increase in the number of passive MF conductors allows us to decompose the USP into a larger number of pulses [10]. A new approach to improving the MF structure based on mirror symmetry has been proposed [11]. It is shown that the use of the periodic topology of the MF allows increasing the difference in mode delays by 2 times compared to the original structure of the MF [12].

Modal decomposition in an MF is possible only in a non-uniform dielectric filling, and its efficiency increases with increasing the values of relative permittivity of the dielectric ε_r (for example, an MF on a ceramic substrate). If it is not possible, the effective decomposition of the USP into a sequence of pulses is provided by increasing the length of the line. However, this leads to an increase in the size of the MFs and limits the scope of their application. The paper [13] considers the possibility of improving the characteristics of the MF by using modern composite materials with a relative magnetic permeability of $\mu_r > 1$. It is also shown that increasing the value of μ_r allows increasing the time intervals between the decomposition pulses. Meanwhile, the effect of changing the μ_r value of the MF substrate on its frequency characteristics, in particular, on the bandwidth, has not been previously considered. Nevertheless, this effect is very important since the parameters of the transmitted useful signal depend on the bandwidth of the filter. The purpose of the work is to perform evaluating the influence of the magnetic permeability of the microstrip modal filter substrate on its frequency characteristics.

2. Structure under research

The microstrip MF structure was selected to investigate the influence of the μ_r value on frequency characteristics. Its cross-section is shown in Figure 1a with geometric dimensions $s=200 \,\mu\text{m}$, $w=850 \,\mu\text{m}$, $t=35 \,\mu\text{m}$, $h=500 \,\mu\text{m}$, $\varepsilon_r=4.5$, and the schematic diagram is shown in Figure 1b. The calculation of MF parameters and signal waveforms at its output under the harmonic influence of an EMF source 2 V was performed using a quasi-static approach in the TALGAT system [14]. The resistances of the resistors (R_1 , R_2 , R_3 , and R_4) connected at the ends of the MF were set based on the condition of ensuring pseudo-agreement, i.e. when the resistances are equal to the mean geometric value of the Z_e and Z_o impedances (Z_e , Z_o are the impedances of even and odd modes, propagating in the line, respectively).

Figure 1. The cross-section (a) and the schematic diagram (b) of the microstrip MF.

3. The simulation results

The frequency dependencies of the MF with lengths l=1, 0.5, and 0.2 m and value $\mu_r = 1, 4, ..., 10$ are obtained to estimate the bandwidth. The simulation results are presented in Figure 2. Figure 3 shows the dependence of the cutoff frequency (f_c) on the level of -3 dB, which determines the bandwidth of the MF and the time interval values between the decomposition pulses (Δt), taken from [13], on the change in the value of μ_r . Figure 3 shows that as the value of μ_r increases, the frequency of the first resonance and the cutoff frequency of the MF decreases.

The μ_r value directly affects the rate of propagation mode in the transmission line:

$$v = \frac{c}{\varepsilon_r \mu_r},$$

where v – is the speed of propagation of modes in the line, c – is the speed of light. Based on the fact that the value of the linear delay τ is inversely proportional to the value of v, i.e.

$$\tau = \frac{1}{v}$$
,

an increase in the value of μ_r will lead to an increase in the difference between the linear delays of the two modes or, in the case when the line length is taken into account, the time interval between the decomposition pulses. From the inverse relation between the value of τ and the frequency of the first resonance f_{res} [15]:

$$f_{res} = \frac{1}{2l(\tau_{even} - \tau_{odd})}$$

it follows that as the value of μ_r increases, the value of f_c decreases and, conversely, as the length of MF decreases, the value of f_c increases.

This statement is fully confirmed by the results of the simulation (Figures 2 and 3). Thus, a 0.2 m long MF on a substrate with $\mu_r=10$ provides almost the same band as a 1 m long MF on a substrate without the use of a composite material. However, with an increase in the f_c value, there is a decrease in Δt , which can lead to a deterioration in the effectiveness of MF attenuation.

4. Conclusion

In conclusion, the frequency dependences $|S_{21}|$ for a microstrip MF on a substrate with $\mu_r=1, 4, 7$ and 10 with the lengths of the MF l=1, 0.5 and 0.2 m are obtained. It is shown that the value of the cutoff frequency decreases as the value of the μ_r increases. Therefore, by varying the value of the substrate's μ_r , it is possible to achieve the required MF characteristics both in the bandwidth of the useful signal and in the required attenuation, including the duration of the USP.

Acknowledgments

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Project FEWM-2020-0041) in TUSUR.

References

- [1] Radasky W A, Baum C E, Wik M W 2004 Special issue of IEEE Transactions on Electromagnetic Comconspatibility 46(3) 314–21
- [2] Gizatullin Z M, Gizatullin R M 2016 Journal of Communications Technology and Electronics 61(5) 546–50
- [3] Mora N, Vega F, Lugrin G, Rachidi F, Rubinstein M 2014 System and assessment notes 41
- [4] Weber T, Krzikalla R, Ter Haseborg J L 2004 *IEEE Transactions on Electromagnetic Compatibility* **46(3)** 423–30
- [5] Mojer C. 2001 Proc. of the 14th Int. Zurich Symp. on EMC, Zurich, Switzerland 47–52
- [6] Krzikalla R, Ter Haseborg J L, Sabath F 2007 Proc. of IEEE Int. Symp. on EMC 1–4
- [7] Gazizov A T, Zabolotsky A M, Gazizov T R 2016 *IEEE Transactions on Electromagnetic Compatibility* **58(4)** 1136–42
- [8] Zabolotsky A M, Gazizov T R 2007 18th International Zurich Symposium on Electromagnetic Compatibility 273–6
- [9] Gazizov T R, Samotin I E, Zabolotsky A M, Melkozerov A O 2015 *Proc. of 30th International Conference on Lightning Protection (ICLP)* 1246-1–3
- [10] Belousov A O, Zabolotsky A M, Gazizov T T 2017 Proc. of 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) 46–9
- [11] Chernikova E B, Belousov A O, Gazizov T R, Zabolotsky A M 2019 Symmetry 11(7) 883 1-25
- [12] Khazhibekov R R, Zabolotsky A M, Khramtsov M V 2017 Proc. of IEEE 2017 International multi-conference on engineering, computer and information sciences 506–9
- [13] Chernikova E B, Ivanov A A 2020 Proc. of 21th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) (to be published)
- [14] Kuksenko S P 2019 IOP Conf. Series: Materials Science and Engineering 560(012110) 1–7
- [15] Orlov P E, Zabolotsky A M, Gazizov T R 2014 Russian Physics Journal 56(9) 1099-101