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Abstract. The paper considers the issue of using iteratiethods in solving the sequence of
linear algebraic systems obtained in quasistatidyars of strip structures with the method of
moments. Using the analysis of 4 strip structutks, authors have proved that additional
acceleration (up to 2.21 times) of the iterativegasss can be obtained during the process of
solving linear systems repeatedly by means of adhgoa proper order of operations and a
preconditioner. The obtained results can be useattelerate the process of computer-aided
design of various strip structures. The choice hef brder of operations to accelerate the
process is quite simple, universal and could bel us# only for strip structure analysis but
also for a wide range of computational problems.

1. Introduction

Distributed circuits based on various strip struesuare widely used in radioelectronic equipment,
both as transmission lines that maintain properadtaristics for desired signals for a long timd as

a basis for new protective devices. A strip strigeteonsists of signal and ground conductors and a
dielectric substrate. The separation between cdardkjdheir thickness, other geometrical parameters
and dielectric permittivity of a substrate can épaatedly changed during simulation and optimipatio
of elements and devices. These processes sigrificartrease computational costs. Generally,
hardware accelerators (multicore workstations, tehss graphical processing units) are used to
decrease computational costs, while algorithmichods are often ignored. A quasistatic approach,
which is based on calculating electric capacitamite the method of moments [1], is widely used to
decrease computational costs of strip structurdysisain contrast to the electrodynamic approach.
The method of moments implies solving linear systemith dense matrix. This paper presents the
research into application of iterative methods fotving dense linear systems repeatedly during
multivariant analysis of strip structures using thethod of moments with the optimal choice of order
of operations.

2. Approaches to solving the sequence of linearstgms
Some tasks are time-consuming and require linestes)s to be repeatedly solved. If all components
of a linear system are changed, the task is reducsol¥ong the equation:

Aka = bk, k= 1,2,...m (l)
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where A, are general nonsingular matricég,are corresponding right-hand sidésis a sequence
number of linear systems)is a total number of linear systems. It is reqiite solve equations of
type (1) in various applications, for example, irethods that use recursive computation of least
squares, in image restoration, applied statistiggmization etc.

There are several approaches to solve the seq@&nbg means of an iterative method when the
system has sparse matrix. The first approach isdoaa recomputing a preconditioner from scratch
for each matrix of a sequence. The second appriedudsed on computing a preconditioner from the
first matrix of a sequence and its further useaiviag other systems (frozen preconditioner) [ZheT
third approach consists in updating a preconditiaigained from the matrix of one of the systems
(seed preconditioner), and in repeating its update=n necessary [3, 4]. The fourth approach istase
on periodic recomputation of a preconditioner. Tifth approach is equivalent to the previous one,
however, if, during some period, the number ofatiens required to solve the current system isdaigg
than the sum of iterations required to solve thst fsystem in this period and a predetermined
threshold, then the preconditioner is updated Thk last approach is based on the adaptive use of
information about Krylov subspaces obtained ingrevious steps [6].

The tasks with some fixed components of linearesystrepresent a special case of solving linear
systems repeatedly [7]. In this case, the taskingpl#ied and can be solved by means of block
versions of Krylov-type iterative methods. To sobpmarse matrices, there are the following methods:
block BiCGStab, block GMRES, GL-LSQR, MHGMRES)( MEGCR, and others [8]. Typically, if
an effective preconditioner is used, block methads preferred rather than solving linear systems
sequentially with different right-hand sides. Howevif all right-hand sides are unavailable at the
same time, these methods are not applicable.

There are tasks that require solving linear algelsgstems of typd\x.=b for k=1, 2, ....m
multiple times. An example of such problem is tlmeetconsuming computation of the capacitance
matrix for strip structures with varied paramet@&gis a square and dense matrix\bbrder) [9] with
boundary element methods [10], also called the atetf moments in electromagnetics [11], and the
panel method in fluid dynamics. The linear systemtrir in the method of moments has a much
smaller order in comparison with the time-domamité-difference, finite element, finite integration
and transmission line matrix methods, which are alsed in electromagnetic tasks. The main
drawback of the numerical methods in general amticpéarly of the methods mentioned above is that
computational costs and especially solution tineedase substantially when a structure under asalysi
becomes more complicated. Therefore, it is importardevelop new approaches to speed up such
calculations, both via hardware [12] and algorithms

Traditionally, linear systems with a dense matr& solved by means of Gaussian elimination or
its compact model, based on the LU-decomposition.eample, the block LU decomposition is used
to calculate the capacitance matrix derived from same structure when the permittivity value of
dielectrics is changed. However, in general casanging the sizes of a structure results in changin
the irregularly located matrix entries, so it iefgrable to use iterative methods to accelerate the
solving process. For example, the iterative metBo@GStab showed a significant speed-up in
comparison with Gaussian elimination. To acceletiageiterative process, two methods were used: in
the first one, the computed solution of the presisystem is used as the initial guess of the curren
linear algebraic system; in the second method,igibgdreconditioning matrixM, computed from the
matrix of the first linear system, is used to sdlve current system. However, the effectivenesbof
preconditioner decreases, as the difference bettieefirst and the current matrix increases. Toesol
this problem, it was suggested to recompute mddriwhen the convergence rate of solving the
current linear system is too slow [13]. Existentemtimal threshold value was shown. However, it is
a priori impossible to determine when to recompute maltfix Thus, the search for aa priori
condition of the recomputation is relevant. Paf] [is devoted to one of the conditions. Other
conditions proposed by the authors have been igeg¢st in paper [14], so they are omitted in this
paper. Summarizing all mentioned above, the sdarctme optimal order of operations to solve linear
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systems is currently important. In this paper,ustmake an attempt to fill this gap and continue
previous research [14] generalizing the recentit®and presenting some new ones.

3. Choosing the optimal order of operations to seé linear systems

A specific order of operations to solve linear sys$¢ can accelerate the total system-solving tinme. A
order is usually predetermined by the desired chasfgstructure parameters. If the total system-
solving time depends on the order of operationsn tthere is an optimal order that provides the
minimum system-solving time. The very principle sflving linear systems repeatedly using the
iterative method with a preconditioner proves tkistence of such order. The order of operations is
determined by two factors: the choice of a matoixrecomputing a preconditioner, and the use of a
previous solution vector as an initial guess far ¢chirrent solution. Multivariant analysis may irau
the following types of parameter variation: linelgarithmic, and user-defined. Variation of the
parameters during optimization can be random indargction.

Let us consider the simplest but widely used lingaration. In such case, there are two options of
system-solving order: with the increase (straigit) a decrease (reverse) of the parameter. Itrihwo
noting that linear parameter variation does notaglvprovide monotonous change of linear system
matrix entries. Anyway, it is useful to analyse soparticular structures. Let us consider linear
parameter variation in order to obtain the optimalution by means of straight or reverse order of
operations. The first results obtained for two &lntes [14] showed the promise of this approach.

In order to test the proposed approach, the autbarged 100 matrices for 4 structures (Figure 1).
For structure 1 (Figure 1a) the matrices of ordérs1600 were obtained by varying the thickness of
the conductortf in the range of 6, 7 ... 1@8n. The matrices of linear systems change more
significantly with changing than with changing the substrate thickndgsof the conductor width
(w); therefore further the authors only considerdtégntt. The number of segments on the structure
boundaries was not changed, and all the systene af¢he same order 1600. Then matrices of order
3200 were obtained by means of a denser segmanté&tio structure 2 (Figure 1b), which is a modal
filter (MF) with broad-side coupling, the matricesorders 2001 and 3001 were obtained by varying
the gapsg) in the range of 100, 101 ... 2é. For structure 3 (Figure 1c), being a mirror MB]|
matrices withN = 1709 and 3109 were obtained by means of chargjindghe range of 7.1, 7.2, ...,
16.9 um. For structure 4 (Figure 1d), being an asgtrical MF [16], matrices wittN = 1901 and
2851 were obtained by means of changirig the range of 5, 10, ... 500 um. Comparison of the
matrices revealed that the matrix of structure $ hauch lower (by three orders of magnitude)
condition number, and structure 2 yields matridethe worst conditioning. If the order of a mati$x
doubled, then the condition number is doubled dk we

w
1 $z [ 1 ] 2 ]
2 h 4 2
3] s |
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6 4
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c d

Figure 1. Cross-sections of the examined structures: (ajnicrostrip line (1 — conductor, 2
dielectric); (b) 2 — symmetrical MF with broadsideupling (1-3 — conductors, 4 — dielectric); (¢) 3
mirror symmetrical MF (1-5 — conductor, 6 — dietext (d) 4 — asymmetrical MF witlbroadsid
coupling (1-3 — conductors, 4 — dielectric).
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Table 1 gives accelerations (columns of BiCGStal &GS methods with a reverse order of
operations relatively to the straight order) ohedirior the reverse order of operations to solvedlin
systems and compared to the straight order dutieganalysis of structures 1-4. Hereinafter, the
solution to the previous system is used as arairgtiess (unit vector is used for the first system)
iterations are carried out till a residual normniere than 17. The solution of all structures is
accelerated during the reverse order of operatiphs for allN and both iterative methods. The
acceleration is explained by a different numberitefations required to solve the systems in the
straight N*;) and reverseN;;) orders [14]. The process of solving linear systémthe straight order
of operations requires more iterations than in eerse order for all types of structures. It is
explained by different linear system matrices thiat used for computing a preconditioner; in the
straight order of operations, a preconditioner lisamed from the °l linear system, while in the
reverse order it is obtained from the fdihear system. Different degrees of matrix chaitgéhe
beginning of a range (strong) and in the end (wéalilso influences the number of iterations. The
obtained results confirm that the order of operetito solve linear systems affects the total system
solving time, moreover it has a significant effeébie authors have obtained average accelerati@n by
factor of 1.5 and the maximum of 1.84.

Table 1. Acceleration of solving 100 linear systems
BiCGStab and CGS with the reverse order BiCGStab with 58 matrix
of operations relatively to the straight order  used for preconditioning

BICGStab CGS Variant of order

Structure N

I Il Il [\
1 1600 1.76 1.73 2.16 2.16 2.16 2.14
3200 1.63 1.66 1.95 1.94 1.96 1.94
> 2001 1.71 1.58 2.05 2.07 2.07 2.07
3001 1.84 1.53 2.19 2.21 2.20 2.21
3 1709 1.82 1.59 1.81 1.80 1.80 1.81
3109 1.83 1.32 1.85 1.86 1.86 1.86
4 1901 1.72 1.61 1.85 1.83 1.84 1.82
2851 1.76 1.63 1.91 1.90 1.91 1.89

A preconditioner influences the total time requitedolve linear systems repeatedly. As a rule, the
structure parameter is changed within a predetexniange, so to compute a preconditioner one can
choose the proper parameter value. The easiestismMmychoose a mean value of a parameter. To
evaluate how the choice of a preconditioner madand the optimal order of operations (straight or
reverse) influenced the process of system-solvihg, authors have carried out a computational
experiment using the BiCGStab method. ThE Btrix was chosen to compute a preconditioner, and
4 different variants given in Table 2 were usedétermine the optimal order of operations.

Table 2.Orders to solve 100 linear systems with thB Bf@trix used for preconditioning
Order to solve linear systems

Variant

1-49 50-100
| — —
I — —
1 — —
AV — —

Table 1 (columns of the BiCGStab method for différeariants of order with 30matrix used for
the preconditioner) contains the obtained accétgratcompared to the®Imatrix for computing the
preconditioner. It is clear that system-solvinggarss is accelerated for all structures and allegabf
N (average acceleration by a factor of 2.0 and mamirof 2.21). Figure 2 shows the number of
iterations for structures 2 and 3 while solving Kfidinear system in the cases when preconditioners
are obtained from the firsMy) and the 58 (Mso) matrices. It is evident that the total number of
iterations for the case when the preconditionerimputed from the 30matrix is less than the one
from the %' matrix. This difference explains the obtained #megion. One can see that the
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acceleration is independent from the variant oeonaf operations and is constant for all structianes
orders of the linear system matrix (small differemcan be explained by a computational error o tim
measurement).
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Figure 2. Number of iterations depending &nwith preconditioner obtained from the firdfl{) anc
the 50" (M s¢) matrices of linear systems for structures:N = 3001 (a); 2 N = 3001 (b).

Then the authors carried out a computational exmari to choose théth matrix (My) for
computing the preconditioner used in solving theltsequence of linear systems. The investigation
started with structure 2 that has the worst matrbnditioning. Figure 3 shows the obtained
accelerations compared to the case of thenatrix. It is clear that acceleration is almoshstant in
the range of from 30 to 60. The fastest acceleration is 2.21f fo50 andN = 3001. For structure 4
and N = 1901, the fastest acceleration of 1.95 is obthifor f = 67. Consequently, let us make a
conclusion that the®1matrix is the worst option for a preconditiones, @l other matrices provide
acceleration, for example, by a factor of 2 fortedle of the range.

Figure 4 shows dependencies of per-unit-length @tpace derived by means of Gaussian method
(C®%) and capacitance error derived by means of theGBi@b C") method ort for structure 1 for
N =1600. One can see that the maximum error is fless a thousandth of a per cent. Thus,
computations are quite accurate.

2.2 TAccdieratio \'\\

2.0 /u’—h/_’vv S~ \\

1.8 // pen =TT T TN Figure 3. Acceleration of solving 100 linear
. / - systems obtained by the BiCGStab method

1.6 77 with the M; matrix for computing a

1.4 ,' / preconditioner (with respect tothe 1

1.2 matrix) for structure 2 foN = 3001 (-) and

10 f structure 4 foN = 1901 (- -).

1 10 20 30 40 50 60 70 80 90 100

4. Conclusion

Using the analysis of 4 strip structures, the autih@ave proved that additional acceleration ohiiee
process can be obtained when solving linear systanisple times by choosing a proper order of
operations and computing the optimal preconditioiie first matrix of a sequence is ineffective for
computing a preconditioner while a simple choianfrthe middle of the range (the"5fhatrix) can

give acceleration by a factor of 2. Various ord&reperations in computing a preconditioner from th
middle of the range insignificantly influence totatceleration. So, there is no need either to
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recompute the preconditioner or to update it.

Thus the obtained results can be useful for acatihgy computer-aided design of various strip
structures. Similar investigations for logarithménd random variations of a parameter and
simultaneous variations of several parameters a@iyaimg more complex elements of the equipment
should be carried out in the future. It is worthing that the proposed idea for acceleration iy ver
simple and easy to implement in software. It doatsraquire additional computer memory or user-
defined parameters for computations. Moreover,oild be used for any iterative method with
preconditioning. Therefore, choosing the order pérations to accelerate the process of solving
systems is quite universal and could be used nigtfon strip structure analysis but also for a wide
range of computational problems.

110 0.001

CSF, pF/m 100941-C CE/C |

/ 0.0005
90 17
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Figure 4. Dependencies of per-unit-length capacitance (d) emor of BiCGStab metho@" with
respect to Gaussian metheff (b) ont for structure 1 foN = 1600.
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