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Abstract— The paper investigates the dependence existing 

between the time of a multiple calculation of a capacitive matrix 

for new protective devices – modal filters, by the method of 

moments. The influence of order (direct or reverse) in which its 

geometric parameter is changed with frozen and seed 

preconditioners is considered.  For computer-aided design of a 

modal filter we are considered the multiple solution of linear 

algebraic systems with dense matrix and several right-hand sides 

by BiCGStab, Block BiCGStab and Seed BiCGStab iterative 

methods. For calculations Matlab and TALGAT systems are 

used. The preferability of using the Block BiCGStab method and 

the seed preconditioner for analyses of modal filters are shown.  

Keywords— Modal filter, multiple solution, linear algebraic 

system, iterative method, capacitance matrix. 

I.  INTRODUCTION  

To ensure electromagnetic compatibility (EMC) of 

radioelectronic equipment and to protect it from interference, 

various design solutions and devices are used. One such 

device is a modal filter (MF) based on the use of modal 

distortions in interconnects of multiconductor transmission 

lines. Taking this peculiarity into account in their design, it is 

preferable to use computer-aided design based on the 

application of a quasistatic approach and the method of 

moments. Indeed, in order to investigate similar structures, the 

numerical simulation is widely used. Simulation of electrical 

characteristics is often carried out using the electromagnetic 

analysis. However, for long 2D-structures a quasi-static 

approach is often relevant. This requires the solution of 

Poisson's equation. Particularly, it allows obtaining causal 

results taking into account frequency dependent losses in 

conductors and dielectrics. TALGAT software [1] is designed 

for computer simulation of a wide class of EMC problems by 

performing the following main functions: quasi-static analysis 

(calculation of matrices) of arbitrary 2D and 3D structures of 

conductors and dielectrics; electromagnetic analysis of 

arbitrary 3D wire structures; computation of time and 

frequency responses of multiconductor transmission lines; 

structural and parametric optimization. A coupled line is a 

basis for many structures, including the MFs. It is assumed in 

the analysis that a coupled line is uniform along its length with 

an arbitrary cross section. In the general case, the cross section 

with Ncond signal conductors and a reference one is 

represented by the following Ncond×Ncond matrices of line 

per-unit-length parameters: inductance (L), coefficients of 

electrostatic induction (C), resistance (R), conductance (G). In 

paper [2] an approach based on a modified nodal admittance 

matrix has been presented for the formulation of network 

equations including the coupled transmission line, terminal, 

and interconnecting networks. Voltages in the time domain are 

obtained by applying the inverse fast Fourier transform. 

Matrices L, C and G are calculated by a method of moments.  

In order to find the parameters of interest when modal 

filters analyzing, it is required to solve subsequently the linear 

systems of the form 

 AkXk=B (1) 

where A – dense, square and nonsymmetric matrix of order N, 

B – N×NCOND matrix of different right-hand sides, NCOND – 

number of conductors in structure, k=1, 2, …, m, m – number 

of linear systems. In this case, systems (1) can be solved by 

LU-decomposition and iterative methods with all righ-hand 

sides separately or block versions of Krylov type iterative 

methods. 
In paper [3] the dependence existing between the time of a 

multiple solution of a capacitive matrix of the strip structures 
and the order (direct or reverse) in which its geometric 
parameter is changed was investigated. To accelerate solution 
of sequence of the (1) with one right-hand side, iterative 
method was used during this computation. Acceleration has 
been obtained due to selection of the reverse order. 

The purpose of this paper is to highlight new results of 

applying iterative methods for solving the systems (1) in the 

analysis of MF by quasistatic approach and the method of 

moments. 

II. SELECTION OF ITERATIVE METHODS 

Traditionally, linear systems with a dense matrix are 

solved by means of Gaussian elimination (which has been 

known for more than 2000 years) [4] or its compact model, 

based on LU-decomposition. For example, to calculate the 

capacitance matrix derived from the same structure when 

changing the value of the permittivity of dielectrics the block 
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LU decomposition is used [5, 6]. This algorithm is based on 

the fact that the diagonal entries in the right lower corner of 

the matrix vary only. However, in the general case, changes in 

the sizes of a structure cause variations in irregularly located 

matrix entries [7], so it is preferable to use iterative methods to 

accelerate solutions. For example, the iterative method 

(BiCGStab), used to accelerate the solution with one right-

hand side, showed a significant speed up with respect to 

Gaussian elimination [8]. To accelerate the iterative process 

the two methods were used: the initial guess of the current 

linear algebraic system is the computed solution of the 

previous one; use for current system solution the implicit 

preconditioning matrix M, computed from the first coefficient 

matrix. However, the effectiveness of preconditioning 

decreases with increasing difference between the first and a 

current matrix. To solve this problem it is suggested to 

recompute the matrix M when the rate of convergence in 

solving the current linear system is too slow [9]. For this 

solution the existence of the optimal threshold value (wherein 

the time of linear system solution is minimal) is shown. 

However, it is not possible to determine a priori when to 

recompute the matrix M. Thus, a search a priori condition of 

the recomputation is relevant. Other conditions have been 

investigated in paper [10], so they are omitted in this paper. 
When the block versions of Krylov type iterative methods 

are used then the subspace is Km(A, R) = span{R, AR, A2R, 
…, Am–1R}, where R – initial residual matrix of N×m size. 
Matrix bases of subspaces K and L are: V = [V1, V2, …, Vm] 
and W = [W1, W2, …, Wm], where V, W – matrices of N×m 
size. Thus, almost any projection iterative method can be 
adapted to solve such tasks. For solution of sparse matrices, 
there are the following methods: Block BiCGStab [11], Block 
GMRES [12] etc. [13].Typically, if an effective preconditioner 
is used, block methods are preferred rather than sequential 
solution of linear systems with different right-hand sides. 
However, if all right-hand sides are unavailable at the same 
time, these methods are not applicable. Anyway, one can use 
the method proposed in [14]. It looks for a starting vector in 
the space spanned by the previous solution vectors in the 
sequence, which is helpful if the solution vectors are 
correlated.  

In this paper, as the iterative methods we used BiCGStab 
methods, because they showed a good performance for dense 
linear system with one right-hand side solution [15]. 

III. SELECTION OF PRECONDITIONER 

Preconditioning is necessary to ensure fast convergence of 

the iterative method. There are several approaches to solving 

of the sequence (1) by an iterative method, when the system 

matrix is sparse. 
The first approach is based on recomputation of a 

preconditioner from scratch for each matrix of sequence. It is 
obvious that such an approach has the highest computational 
costs. The second approach is based on the computation of the 
preconditioner from the first matrix of sequence and its using 
for the solution of other systems (frozen preconditioner) [16]. 
The third approach lies in update of a preconditioner obtained 
from the matrix of one of the systems (seed preconditioner), 

and in the repeating the update when necessary [17]. The 
fourth approach is based on periodic recomputation of a 
preconditioner before the solution of each p-th system and use 
of the preconditioner as a frozen preconditioner during the 
period. The fifth approach is equivalent to the previous one, 
however, if during the period the number of iterations required 
for solutions of the current system (iterj) is bigger than the 
sum of number of iterations required for the solutions of the 
first system in period (iter0) and a predetermined margin (s), 
i.e. iterj>iter0+s, j=1, …, p–1, then the preconditioner is 
updated [18]. The last method is based on adaptive use of 
information about the Krylov subspaces obtained on the 
previous steps, used to update the preconditioner and the 
iterative method (recycling of Krylov subspaces) [19]. 

Fig. 1. Cross section of the examined structures: 1 – symmetrical MF with 

broad-side coupling (1–3 – conductors, 4 – dielectric) (a); 2 – reverse 

symmetrical MF (1–5 – conductor, 6 – dielectric) (b) 

For the first study in this paper we used frozen 
preconditioner with different order of solution (direct and 
reverse), seed preconditioner and full LU-decomposition for 
its forming. Using of full LU-decomposition is a best case of 
the sequence (1) with one right-hand side solution [8, 9]. 

IV. NUMERICAL EXPERIMENTS 

For numerical experiments we used a personal computer 

with the following parameters: platform – Intel(R) Core (TM) 

i7 CPU 970; processor frequency – 3.20 GHz, memory – 

24 Gb; number of cores – 6; operating system – Windows 

7x64; Matlab 2013b. 
For two structures (Fig. 1) 100 matrices were formed in 

TALGAT software [Error! Bookmark not defined.]. For the 
structure 1 (Fig. 1a), which is a modal filter with broad-side 
coupling [20], the matrices of order N=3001 were obtained by 

varying the gap (s) in the range of 100, 101 ... 200 µm. 
Number of right-hand sides was 3 and number of conductor 
segments was 2550. For structure 2 (Fig. 1b), being a mirror 
MF [21], matrixes with N=3109 were obtained by means of 
change of spaces (s) in the range of 16.9, 16.8 … 7.1 µm. 
Number of right-hand sides was 5 and number of conductor 
segments was 2220. We compared the performance of the 
Block BiCGStab method [11], the Seed BiCGStab [22] 
method and the BiCGStab method applied to each single right-
hand side (separate solution). We also used LU decomposition 
as a frozen preconditioner (direct and reverse order) and a 
seed preconditioner (formed from A50). Iterations were 
continued until the relative residual norm became smaller than 
10−6. Maximum number of iterations for all methods was 200. 
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Fig. 2. Number of iterations for the BiCGStab and the Block BiCGStab 

methods with zero initial guess for the structure 1 

Fig. 3. Number of iterations for the BiCGStab and the Block BiCGStab 

methods with previous solution as an initial guess for structure 1 

Fig. 4.  Number for iterations by the BiCGStab and the Block BiCGStab 

methods with zero initial guess for the structure 2 

Obtained number of iterations by the BiCGStab and the 
Block BiCGStab methods with zero initial guess (X0=0) for 

the structure 1 are shown in Fig. 2. Results for previous 
solution used as an initial guess (X0=Xk–1) are shown in Fig. 3. 
Similar results for the structure 2 are shown in Fig. 4 and 
Fig. 5. In Table I we listed the solution time ratios with respect 
to the solution with the BiCGStab method and zero initial 
guess for the structure 1. It can be seen that the use of the seed 
preconditioner is preferable. The use of the reverse order of 
the solution with respect to the direct also allows increasing 
the productivity. Also for all the cases considered, the use of 
the previous solution as the initial guess of the next system is 
preferable to the zero initial guess. 

TABLE I.  SPEED UP OF 100 LINEAR SYSTEMS SOLUTION BY THE 

BICGSTAB AND THE BLOCK BICGSTAB METHODS WITH DIFFERENT 

PRECONDITIONERS FOR THE STRUCTURE 1 

Preconditioner 
BiCGStab  Block BiCGStab 

X0=0 X0=Xk–1 X0=0 X0=Xk–1

Frozen 
Direct order 1.00 1.55 3.47 4.34 

Reverse order  2.61 3.71 6.36 8.06 

Seed 3.39 4.77 7.22 9.01 

Fig. 5. Number of iterations for the BiCGStab and the Block BiCGStab 

methods with previous solution as an initial guess for the structure 2 

In Table 2 we listed similar ratios for the structure 2. As 
for structure 1, it is preferable to use the seed preconditioner, 
and to use previous solution as the initial guess of the next 
system. At the same time the use of the reverse order with 
respect to the direct one, on the contrary, allows to obtain 
lower productivity. 

TABLE II.  SPEED UP OF 100 LINEAR SYSTEMS SOLUTION BY THE 

BICGSTAB AND THE BLOCK BICGSTAB METHODS WITH DIFFERENT 

PRECONDITIONERS FOR THE STRUCTURE 2 

Preconditioner 
BiCGStab  Block BiCGStab 

X0=0 X0=Xk–1 X0=0 X0=Xk–1

Frozen 
Direct order 1.00 1.40 3.88 5.28 

Reverse order  0.26 0.53 2.86 3.21 

Seed 1.57 2.05 5.44 5.88 

Next, we evaluated the use of the Seed BiCGStab method. 
The method was not efficient for the task, because, regardless 
of the approach used, the maximum number of iterations was 
required for solving some systems. For example, the number 
of iterations required for the analysis of the structures under 
consideration (best and worst cases) is shown in Fig. 6. It can 
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be seen that the obtained dependences are distinguished by a 
large oscillation. 

Fig. 6. Number of iterations for the seed BiCGStab method 

V. CONCLUSION  

The process of multiple solution of linear systems with 
different right-hand sides by iterative methods arising from the 
analysis of protecting devices by method of moments is 
shown. The performance of the Block BiCGStab, Seed 
BiCGStab method and BiCGStab methods with a frozen 
preconditioner and a seed preconditioner and two types of 
initial guess were compared. The preferability of using the 
Block BiCGStab method, the seed preconditioner and 
previous solution as an initial guess for next system is shown. 
Acceleration up to 9 times has been obtained due to selection 
of the Block BiCGStab method and seed preconditioner with 
respect to the BiCGStab method and frozen preconditioner. 
Also it is shown that the use of Seed BiCGStab method for 
analysis of modal filters is not efficient. 
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