

АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИИ И КОСМОНАВТИКИ

Министерство образования и науки Российской Федерации Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева

АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИИ И КОСМОНАВТИКИ

Сборник материалов XIV Международной научно-практической конференции, посвященной Дню космонавтики (09–13 апреля 2018 г., Красноярск)

В 3-х томах

Tom 1

Электронное издание

Красноярск 2018

УДК 629.7 ББК 39.5 A43

Редакционная коллегия:

Ю. А. Анищенко, Е. Н. Бельская, Е. В. Белякова, В. В. Богданов, А. А. Бойко, Г. М. Гринберг, Ю. В. Данильченко, Д. В. Еремеев, Т. Т. Ереско, В. В. Золотарев, И. Н. Карцан, А. В. Кацура, Е. А. Кустова, О. В. Летунова, К. Ю. Лобков, А. В. Лонин, М. В. Лукьяненко, В. И. Лячин, А. В. Медведев, М. Г. Мелкозеров, И. А. Мисинева, А. Е. Михеев, А. В. Мурыгин, В. П. Назаров, Н. В. Никушкин, А. С. Паршин, О. Е. Подвербных, И. В. Полухин, Л. В. Ручкин, К. В. Сафонов, В. В. Сафронов, С. И. Сенашов, Н. А. Смирнов, А. А. Снежко, О. В. Тасейко, Е. В. Титов, И. В. Трифанов, М. Н. Фаворская, Н. В. Фомина, И. Я. Шестаков

Под общей редакцией

доктора физико-математических наук, профессора Ю. Ю. Логинова

Актуальные проблемы авиации и космонавтики [Электронный ресурс]: сб. мате-А43 риалов XIV Междунар. науч.-практ. конф., посвящ. Дню космонавтики (09–13 апреля 2018 г., Красноярск): в 3 т. Т. 1. – Электрон. текстовые дан. (1 файл: 14,8 МБ). – Систем. требования: Internet Explorer; Acrobat Reader 7.0 (или аналогичный продукт для чтения файлов формата .pdf) / под общ. ред. Ю. Ю. Логинова; СибГУ им. М. Ф. Решетнева. – Красноярск, 2018. – Режим доступа: https://apak.sibsau.ru/page/materials. – Загл. с экрана.

Представлены результаты научных исследований студентов, аспирантов и молодых специалистов (до 30 лет) высших учебных заведений, НИИ, промышленных предприятий аэрокосмического комплекса России по приоритетным направлениям отраслей науки и производства аэрокосмической техники. Рассмотрены теоретические и прикладные вопросы разработки и использования современных технологий, показаны результаты исследования по экономическим и социальным проблемам развития современного общества, а также решения в области информационных технологий. Изложены результаты исследования свойств новых композитных материалов, позволяющих уменьшить вес и габариты аэрокосмических изделий. Описаны проблемы и указаны пути их решения в области экологии и обеспечения безопасности полетов, сертификации и управления качеством продукции.

Сборник предназначен для студентов, аспирантов и молодых специалистов.

Информация для пользователя: в программе просмотра навигация осуществляется с помощью панели закладок слева; содержание в файле активное.

УДК 629.7 ББК 39.5

Подписано к использованию: 07.05.2018. Объем: 14,8 МБ. С 209/18.

Корректура, макет и компьютерная верстка Π . В. Звонаревой

Редакционно-издательский отдел СибГУ им. М. Ф. Решетнева. 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31. E-mail: rio@mail.sibsau.ru. Тел. (391) 201-50-99.

От РЕДАКЦИОННОЙ КОЛЛЕГИИ

Перед Вами очередной сборник материалов Международной научнопрактической конференции «**Актуальные проблемы авиации и космонавтики**», посвященной Дню космонавтики.

Символично, что конференция проходит в апреле — месяце, когда человек впервые полетел в космос. Она проводится для студентов, аспирантов и молодых специалистов предприятий и организаций аэрокосмической отрасли, высших учебных и научно-исследовательских заведений, дает им возможность представить свои разработки, результаты исследований. Конференция — это замечательная возможность общения высококвалифицированных специалистов с новым кругом будущих ученых и производственников.

В сборнике представлены доклады творческой молодежи, имеющей отношение к авиационной или космической технике — ее проектированию, созданию, решению научных проблем космического машиностроения, системе аэрокосмического образования, макро- и микроэкономическому развитию данного направления, новым подходам к решению социальных и философских вопросов и всех тех, кто хочет посвятить себя космонавтике и авиации. В связи с высоким статусом мероприятия организаторы включили в сборник далеко не все научные сообщения, а наиболее интересные и перспективные, характеризующие направления и глубину проводимых научных исследований молодежи.

Для большинства авторов это первая в жизни серьезная работа, и мы уверены, что она станет хорошей отправной точкой для дальнейшей научной деятельности, расширит и укрепит их контакты в научной среде, а также будет бесценным вкладом в их будущее.

УДК 621.372.8.01

МОДЕЛИРОВАНИЕ ХАРАКТЕРИСТИК МИКРОПОЛОСКОВОЙ ЛИНИИ С БОКОВЫМИ ЗАЗЕМЛЕННЫМИ ПРОВОДНИКАМИ У ГРАНИЦЫ ВОЗДУХ-ПОДЛОЖКА ПРИ ИЗМЕНЕНИИ ТОЛЩИН ПРОВОДНИКОВ*

И. Е. Сагиева

Томский государственный университет систем управления и радиоэлектроники Российская Федерация, 634050, г. Томск, просп. Ленина, 40 E-mail: indira sagieva@mail.ru

Вычислены зависимости погонной задержки и волнового сопротивления от расстояния между заземленными проводниками. Показаны возможности получения нулевой чувствительности этих характеристик. Результаты полезны для проектирования межсоединений бортовой радиоэлектронной аппаратуры.

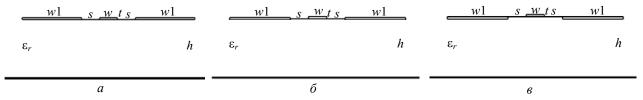
Ключевые слова: микрополосковая линия, погонная задержка, волновое сопротивление, боковые заземленные проводники, нулевая чувствительность.

SIMULATION OF CHARACTERISTICS OF MICROSTRIP LINE WITH SIDE GROUNDED CONDUCTORS NEAR AIR-SUBSTRATE BOUNDARY WHEN CHANGING THICKNESS OF CONDUCTORS

I. Ye. Sagiyeva

Tomsk State University of Control Systems and Radioelectronics 40, Lenina Av., Tomsk, 634050, Russian Federation E-mail: indira sagieva@mail.ru

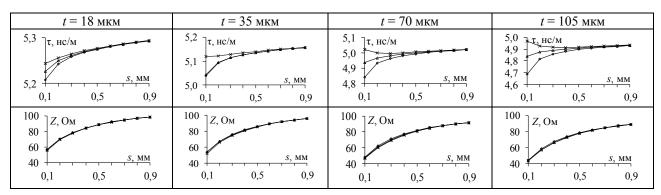
Dependences of per-unit-length delay and characteristic impedance on a distance between grounded conductors are calculated. Possibilities of obtaining zero sensitivity of these characteristics are shown. The results are useful for designing interconnects of on-board radio-electronic equipment.


Keywords: microstrip line, per-unit-length delay, impedance, side grounded conductors, zero sensitivity.

Введение. В настоящее время различные модификации микрополосковой линии (МПЛ) [1] широко используются в микроэлектронике и печатных платах (ПП), применяемых в бортовой радиоэлектронной аппаратуре космических аппаратов. Расположение печатных проводников на ПП, а также их параметры играют решающую роль для получения стабильных значений характеристик линии передачи, таких, как погонная задержка (τ) и волновое сопротивление (Z). В этой связи актуальна минимизация чувствительности характеристик линий к изменению их параметров. Ранее исследованные автором модификации МПЛ, с боковыми заземленными проводниками сверху [2] и углубленными в подложку [3], позволяют получить стабильное значение τ . Возможность минимизации чувствительности в этих случаях появляется за счет перераспределения электрического поля в слоях воздуха и подложки. Также выявлено, что боковые заземлённые проводники оказывают особое влияние вблизи границы раздела двух сред. В этой связи полезно более детальное исследование характеристик τ и Z для МПЛ с заземленными боковыми проводниками, расположенными у границы воздух-подложка, при изменении толщины проводников. Цель данной работы — выполнить такое исследование.

386

 $^{^*}$ Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации по проекту RFMEFI57417X0172.


Моделирование линии. Для достижения указанной цели, в системе TALGAT [4] построены геометрические модели поперечного сечения линии (см. рисунок) и методом моментов вычислены матрицы (порядка 3*3) погонных коэффициентов электростатической индукции, с учетом диэлектрика и без него. Значения ряда параметров выбраны типовыми и не менялись: толщина подложки h=1 мм; относительная диэлектрическая проницаемость подложки $\varepsilon_r=4,5$; ширина сигнального проводника w=0,3 мм; ширина боковых заземленных проводников w1=1 мм. Из матриц брались значения (обозначаемые далее C и C_0) диагонального элемента, соответствующего сигнальному проводнику, и вычислялись значения τ и Z (v_0 – скорость света в вакууме) как $\tau=(C/C_0)^{0,5}/v_0$, $Z=1/(v_0(CC_0)^{0,5})$.

Поперечное сечение МПЛ с боковыми заземленными проводниками, над (a), посреди (δ) и под (ϵ) границей воздух–подложка

Вычислены значения τ и Z для типовых значений толщины проводников (t=18,35,70,105 мкм) при изменении разноса проводников s (см. таблицу). Рассмотрим сначала графики для τ . При увеличении s значение τ плавно увеличивается, но не во всех случаях. Так, углубление заземленных проводников уменьшает чувствительность τ к изменению s, причем всё сильнее, c ростом толщины проводников, вплоть до нулевой чувствительности τ . Можно предположить. При определенных параметрах МПЛ чувствительность может быть снижена почти до нуля в широком диапазоне значений s, например, значение τ для рис. 1, s при t=35 мкм изменяется лишь на 0.8 %. Показательны, например, и графики для τ при t=105 мкм, поскольку график для τ , τ углублением боковых проводников, превращается из монотонно возрастающего в монотонно убывающий. Очевидно, что существует такое значение углубления проводников, при котором график

au будет почти горизонтальной прямой в максимальном диапазоне значение s. Анализ графиков для Z показывает незначительное влияние положения боковых проводников. Тем самым, появляется возможность выбором параметров линии получить требуемое значение Z при минимальной чувствительности τ к изменению s.

Зависимости τ и Z от s для рис. 1 a (\diamond), δ (Δ), δ (\times) при t = 18, 35, 70, 105 мкм

Заключение. Таким образом, вычислены зависимости τ и Z от s при изменении положения боковых проводников у границы воздух—подложка для типовых значений t. Показаны возможности минимизации чувствительности. Результаты могут быть использованы для получения стабильных характеристик межсоединений бортовой радиоэлектронной аппаратуры космических аппаратов.

Библиографические ссылки

- 1. Maloratsky L. G. Using modified microstrip lines to improve circuit performance // High Frequency Electronics. 2011. Vol. 10, No. 5. P. 38–52.
- 2. Сагиева И. Е. Моделирование характеристик микрополосковой линии с боковыми заземленными проводниками сверху // Электронные средства и системы управления : материалы XIII Междунар. науч.-практ. конф., посвящ. 55-летию ТУСУРа (29 ноября 1 декабря, г. Томск). 2017. Ч. 2. С. 19–20.
- 3. Сагиева И. Е. Моделирование характеристик микрополосковой линии с боковыми заземленными проводниками, углубленными в подложку // Сб. тез. науч.-техн. конф. молодых специалистов АО «ИСС». Железногорск, 2017. С. 89–91.
- 4. Новые возможности системы моделирования электромагнитной совместимости TALGAT / С. П. Куксенко, А. М. Заболоцкий, А. О. Мелкозеров и др. // Докл. Том. гос. ун-та систем управления и радиоэлектроники. 2015. № 2(36). С. 45–50.

© Сагиева И. Е., 2018

Ереско С. П., Межов В. Г., Ушаков А. В. Исследование динамических характеристик	
механизма обработки древесных композитных плит	342
Ермиенко И. Ю. Совершенствование лабораторной установки для исследования	• • •
затянутого болта	346
Кобзов Д. Ю., Ереско С. П., Губанов В. Г., Трофимов А. А., Слепнева Е. А.	
Диагностирование гидроцилиндра по параметрам герметизирующей способности	2.40
его уплотнительных узлов	349
Кузубов К. С., Речка А. Г., Жубрин В. Г. Динамические характеристики шасси	252
большегрузного погрузчика при движении с поднятым грузом Курочкина А. В., Ереско А. С., Иваненко Е. В. Цифровой тахометр с использованием	333
датчика холла на платформе Arduino	356
Швалева Н. А., Фадеев А. А., Ереско Т. Т. Конечно-элементный анализ	330
напряженно-деформированного состояния якоря линейного двигателя с инструментом	
при ударном воздействии	350
при ударном воздействии	337
Секция	
«Электронная техника и технологии»	
Братченко Ю. В., Довбыш И. А. Разработка пространственного сумматора	
мощности миллиметрового диапазона	362
Виноградов К. Н., Шестаков И. Я., Фадеев А. А., Надараиа Ц. Г. Источник	
бесперебойного питания для энергообеспечения лунной станции	365
Гриц В. И., Малышев Д. О. Спутниковые системы на основе квантовых линий связи	368
Добряк А. С. Анализ рынка ионисторов в Российской Федерации	371
Евдакова А. А., Довбыш И. А. Разработка способа корпусирования СВЧ-устройств	
для обеспечения ЭМС	374
Лемешко М. А., Маркелова Н. Н., Мухаметов М. Р., Полозков А. М. Классификация	
сигналов по спектру амплитудных флюктуаций	377
Поветкин И. С. Исследование возможностей современных цифровых сигнальных	
процессоров	380
Притула А. С., Тугарина В. А., Рычкова Ю. И., Стецюк Р. П. Классификация	
воздушных объектов по величине эффективной поверхности рассеяния	383
Сагиева И. Е. Моделирование характеристик микрополосковой линии с боковыми	
заземленными проводниками у границы воздух-подложка при изменении толщин	
проводников	
Ступак В. В. Проблемы изготовления катушек индуктивности	389
Торгашин П. Б. Облачная студенческая лаборатория на основе одноплатных	
компьютеров Raspberry pi	391
Секция	
«Сварка летательных аппаратов и родственные технологии»	
Александров И. В., Бем Е. А. Актуальные проблемы качества литых заготовок,	
получаемых методом ЛВМ и их неразъемных соединений	394
Анциферов П. В., Беляков Н. Н., Оборин Л. А. Математическое моделирование	574
как один из эффективных механизмов формирования литой заготовки	397
Аржанникова И. Е. Перспектива применения технологии сварки 1151АТ	
в ракетостроении	399