УДК 621.315.216

И.И. Николаев, М.Е. Комнатнов

Анализ погонных параметров силовых шин электропитания с коаксиальным и спиральным поперечными сечениями

Выполнено сравнение погонных параметров коаксиальной силовой шины электропитания со спиральной при проводниках бесконечно тонких и конечной толщины. Показано, как увеличение количества витков и толщины стенок пластин приводит к уменьшению погонной индуктивности и волнового сопротивления и увеличению погонной ёмкости. Сравнение погонных параметров спиральной с коаксиальной СШЭП показало, что значения погонных параметров коаксиальной и спиральной с коаксиальной СШЭП показало, что значения погонных параметров коаксиальной и спиральной СШЭП довольно близки, и различие уменьшается при увеличении количества цилиндров для коаксиальной и витков для спиральной СШЭП. Между тем спиральная линия более предпочтительна, чем коаксиальная, особенно при уменьшении N и увеличении t.

Ключевые слова: силовая шина электропитания, численное моделирование, погонные параметры.

Силовые шины электропитания (СШЭП) используются для передачи электроэнергии высокой мощности от источника к потребителю. Преимуществами их использования являются низкий импеданс за счёт сильно связанных проводящих плоскостей, упрощённая сборка и повышенная надёжность. В основном СШЭП изготавливают с прямоугольным поперечным сечением, поскольку это является наиболее простым и известным конструкторским решением. В работе [1] исследуются зависимости значений погонных параметров различных форм поперечного сечения СШЭП с сохранением площади 50 мм². Показано, что увеличение отношения ширины к толщине проводников приводит к уменьшению значений погонной индуктивности и волнового сопротивления, а также увеличению погонной ёмкости. При этом СШЭП с круглым (коаксиальным) поперечным сечением является более эффективной конструкцией за счёт компенсации вихревых магнитных полей в окружении СШЭП [2].

Конструкция коаксиальной СШЭП представляет собой систему, состоящую из коаксиальных трубок. Главными особенностями данной конструкции являются отсутствие результирующего магнитного поля в окружении СШЭП, а также низкое значение погонной индуктивности и низкие потери мощности. Увеличение количества цилиндров и толщины их стенок приводит к уменьшению погонной индуктивности и увеличению погонной ёмкости, что является положительным эффектом при проектировании СШЭП [3]. Спиральное поперечное сечение можно рассматривать как частный случай реализации коаксиального поперечного сечения.

В работе [4] предложена математическая модель распространения поперечной T-волны в линии передачи со спиральным поперечным сечением. В [5] представлена математическая модель для вычисления погонных параметров СШЭП со спиральным поперечным сечением для N витков. При этом в работах по спиральной линии отсутствует учёт толщины проводников, а также её сравнение с коаксиальной.

Таким образом, видится необходимым провести анализ, оценку и сравнение погонных параметров

коаксиального и спирального поперечных сечений СШЭП. Результаты учёта толщины проводников будут полезны при проектировании СШЭП с коаксиальным и спиральным поперечными сечениями.

Цель данной работы – выполнить анализ и сравнение погонных параметров СШЭП с коаксиальной и спиральной формами поперечного сечения.

Спиральная СШЭП с проводниками бесконечно тонкими и конечной толщины

Созданы модели спирального поперечного сечения СШЭП с проводниками бесконечно тонкими (рис. 1, a) и конечной толщины (рис. 1, δ) в программном обеспечении TALGAT [6].

Исходными данными при вычислении погонных параметров являлись: начальный радиус r = 1,2 мм, расстояние между витками w = 0,1 мм, толщина проводников t = 0,1; 0,5; 1 мм и заданное количество витков *N*. Потери в проводниках и диэлектриках не учитывались. Относительные магнитная (μ_r) и диэлектрическая (ε_r) проницаемости приняты равными 1.

Для спиральной СШЭП с проводниками бесконечно тонкими и конечной толщины (см. рис. 1) выполнено вычисление погонной индуктивности (L) и ёмкости (C) при увеличении N от 1 до 10 (рис. 2).

Рис. 1. Поперечные сечения спиральной СШЭП с проводниками бесконечно тонкими (a) и конечной толщины (δ)

Из рис. 2 видно, что при увеличении t значения L уменьшаются, а C – увеличиваются, что является положительным эффектом при проектировании подобных СШЭП. Так, для СШЭП с бесконечно тонкими проводниками при увеличении N значения L уменьшились с 13,7 до 0,45 нГн/м (в 30 раз), а C – увеличились с 0,82 до 24,8 н Φ /м (в 30 раз), что привело к уменьшению волнового сопротивления (Z) с 4,1 до 0,13 Ом (в 30 раз) (рис. 3).

При увеличении толщины проводников значение L уменьшается, а C – увеличивается. Так, при t = 0,1 мм, значения L уменьшились с 12,28 до 0,31 нФ/м (в 40 раз), а С – увеличились с 0,9 до 35,69 н $\Phi/м$ (в 40 раз). При t = 0,5 мм значения L уменьшились с 8,4 до 0,14 н $\Phi/м$ (в 60 раз), а C – увеличились с 1,36 до 81,62 нФ/м (в 60 раз). При t = 1 мм значения L уменьшились с 6,05 до 0,08 нФ/м (в 75 раз), а *С* – увеличились с 1,84 до 137,98 нФ/м (в 75 раз). Таким образом, увеличение t от 0,1 до 1 мм, привело к уменьшению Z в 1,875 раза (см. рис. 3). Значения L и Z спиральной СШЭП при t = 0,1; 0,5;1 мм, в сравнении с СШЭП при бесконечно тонких проводниках уменьшились, а С – увеличились в 1,33; 2 и 2,5 раза соответственно. Увеличение *N*, для бесконечно тонкой проводников, приводит к увеличению внешнего радиуса СШЭП от 1,5 мм до 3,3 мм (2,2 раза) и длины дуги спирали от 8,8 до 144,5 мм (в 16,4 раза). Увеличение толщины проводников приводит к увеличению внешнего радиуса в 2,89 (с 1,9 до 5,5 мм); 4 (с 3,5 до 14,3 мм); 4,6 (с 5,5 до 25,3 мм) раза и увеличению среднего значения длины дуги спирали в 21,7 (с 10 до 217 мм); 30 (с 17 до 506 мм); 35 (с 25 до 867 мм) раз соответственно.

Сравнение коаксиальной и спиральной СШЭП с бесконечно тонкими проводниками

Проведено сравнение значений L и C при увеличении количества (N) витков для спиральной и цилиндров для коаксиальной СШЭП по результатам работы [3]. Разница значений погонных параметров коаксиальной СШЭП по отношению к спиральной (δ) уменьшается с ростом N (рис. 4). Так, при N = 1, 5, 10 она составляет 10, 7 и 5% соответственно.

Сравнение коаксиальной и спиральной СШЭП с конечной толщиной проводников

В таблице представлены значения L и C, а также Z коаксиальной и спиральной СШЭП при t = 0,1; 0,5; 1 мм для N = 1, 5, 10. Видно, что при увеличении t значения L и Z уменьшаются, а C – увеличиваются. При этом значения L и Z для спиральной СШЭП по отношению к коаксиальной меньше, а C – больше. Так, при t = 0,1 мм и N = 1, 5, 10, разница значений погонных параметров составляет 13,97, 7 и 4,7%, при t = 0,5 мм – 32,97; 12,3 и 7,1%, а при t = 1 мм – 42,1; 12,8 и 6,95% соответственно.

Значения и отклонения параметров для спиральной и коаксиальной СШЭП при разной толщине проводников и разных N

<i>t</i> , <i>N</i>	СШЭП	<i>L</i> , нГн/м	ΔL, %	С, нФ/м	Δ <i>C</i> , %	<i>Z</i> , Ом	ΔΖ, %
<i>t</i> = 0,1 мм,	Коакс.	14,02	13 97	0,79	13 97	4,2	13 97
N = 1	Спир.	12,31	13,77	0,9	15,77	3,69	13,77
<i>t</i> = 0,1 мм,	Коакс.	1	7	11,13	7	0,3	7
N = 5	Спир.	0,93	/	11,91	/	0,28	/
t = 0,1 мм,	Коакс.	0,33	4,7	34,07	4,7	0,1	4,7
N = 10	Спир.	0,31		35,69		0,09	
<i>t</i> = 0,5 мм,	Коакс.	10,95	22.07	1,02	22.07	3,28	22.07
N = 1	Спир.	8,24	52,97	1,35	52,97	2,47	32,97
t = 0,5 MM,	Коакс.	0,53	12.2	21,15	12.2	0,16	12.2
N = 5	Спир.	0,47	12,5	23,75	12,5	0,14	12,5
t = 0,5 мм,	Коакс.	0,15	71	76,26	71	0,044	71
N = 10	Спир.	0,14	/,1	81,67	/,1	0,04	/,1
<i>t</i> = 1 мм,	Коакс.	8,6	42.1	1,29	42.1	2,58	42.1
N = 1	Спир.	6,05	42,1	1,84	42,1	1,81	42,1
<i>t</i> = 1 мм,	Коакс.	0,33	128	33,67	128	0,1	128
N = 5	Спир.	0,29	12,0	37,99	12,0	0,09	12,0
<i>t</i> = 1 мм,	Коакс.	0,09	6.05	129,18	6.05	0,03	6.05
N = 10	Спир.	0,08	0,95	138,15	0,95	0,02	0,95

При этом значение внешнего радиуса для коаксиальной СШЭП при t = 0,1; 0,5; 1 мм и N = 10 составляет 5,1; 13,1; 23,1 мм соответственно, а для спиральной СШЭП – 5,5; 14,3; 25,3 мм.

XVI Международная научно-практическая конференция, 18-20 ноября 2020 г.

Заключение

Выполнен анализ СШЭП со спиральным поперечным сечением с проводниками бесконечно тонкими и конечной толщины. Показано, что увеличение количества витков и толщины проводников приводит к уменьшению L и Z и увеличению C. При этом увеличиваются внешний радиус и средняя длина дуги конструкции СШЭП.

Сравнение погонных параметров спиральной с коаксиальной СШЭП показало, что значения погонных параметров коаксиальной и спиральной СШЭП довольно близки, и различие уменьшается при увеличении количества цилиндров для коаксиальной и витков для спиральной СШЭП. Между тем спиральная линия более предпочтительна, чем коаксиальная, особенно при уменьшении N и увеличении t. Однако для более корректного сравнения его целесообразно выполнить при равных поперечных сечениях линий. Это предполагается сделать в перспективе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 19-37-51017.

Литература

1. Ternov S. Influence of the cross-section form of the power bus bar on its parameters / S. Ternov, A.V. Demakov, M.E. Komnatnov // Moskow Workshop on Electronic and Networking Technilogies (MWENT). – Moscow, 14–16 March 2018. – P. 1–4.

2. Ehrich M. Electrical properties and magnetic fields of a coaxial bus bar / M. Ehrich, L.O. Fichte, M. Luer // Proc. Asia-Pacific Conf. on Environmental Electromagnetics, Shanghai, China, 7 May 2000. – P. 11–16. 3. Николаев И.И. Силовая шина электропитания с коаксиальным поперечным сечением / И.И. Николаев, М.Е. Комнатнов / Сб. избр. статей научной сессии ТУСУР по матер. междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых «Научная сессия ТУСУР–2020». – Томск: В-Спектр, 2020. – Ч. 1. – С. 257–260.

4. Fabbri I.M. The spiral coaxial cable // International Journal of Microwave Science and Technology. – 26 Feb. 2015. – Vol. 15, Iss. 2. – P. 1–18.

5. Komnatnov M.E. Electrical modeling of the spiral bus bar / M.E. Komnatnov, T.R. Gazizov // IEEE 21th International Conference on Micro/Nanotechnologies and Electron Devices EDM. – 2020, Chemal, Russia, 29 June – 3 July 2020. – P. 1–5.

6. Куксенко С.П. Новые возможности системы моделирования электромагнитной совместимости TALGAT / С.П. Куксенко, А.М. Заболоцкий, Т.Р. Газизов // Доклады ТУСУР. – 2015. – С. 45–50.

Николаев Илья Игоревич

М.н.с. НИЛ «ФИЭМС» каф. телевидения и управления (ТУ) Томского гос. ун-та систем управления и радиотехники (ТУСУР)

Вершинина ул., 47, г. Томск, 634045 Тел.: +7-999-619-01-12 Эл. почта: nikolaev.727@yandex.ru

Комнатнов Максим Евгеньевич

С.н.с. НИЛ «БЭМС РЭС» каф. ТУ ТУСУРа Вершинина ул., 47, г. Томск, 634045 Тел.: +7-952-888-38-96 Эл. почта: maxmek@mail.ru